1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
//! An intrusive double linked list of data

#![allow(dead_code, unreachable_pub)]

use core::{
    marker::PhantomPinned,
    ops::{Deref, DerefMut},
    ptr::NonNull,
};

/// A node which carries data of type `T` and is stored in an intrusive list
#[derive(Debug)]
pub struct ListNode<T> {
    /// The previous node in the list. `None` if there is no previous node.
    prev: Option<NonNull<ListNode<T>>>,
    /// The next node in the list. `None` if there is no previous node.
    next: Option<NonNull<ListNode<T>>>,
    /// The data which is associated to this list item
    data: T,
    /// Prevents `ListNode`s from being `Unpin`. They may never be moved, since
    /// the list semantics require addresses to be stable.
    _pin: PhantomPinned,
}

impl<T> ListNode<T> {
    /// Creates a new node with the associated data
    pub fn new(data: T) -> ListNode<T> {
        Self {
            prev: None,
            next: None,
            data,
            _pin: PhantomPinned,
        }
    }
}

impl<T> Deref for ListNode<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.data
    }
}

impl<T> DerefMut for ListNode<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.data
    }
}

/// An intrusive linked list of nodes, where each node carries associated data
/// of type `T`.
#[derive(Debug)]
pub struct LinkedList<T> {
    head: Option<NonNull<ListNode<T>>>,
    tail: Option<NonNull<ListNode<T>>>,
}

impl<T> LinkedList<T> {
    /// Creates an empty linked list
    pub fn new() -> Self {
        LinkedList::<T> {
            head: None,
            tail: None,
        }
    }

    /// Adds a node at the front of the linked list.
    /// Safety: This function is only safe as long as `node` is guaranteed to
    /// get removed from the list before it gets moved or dropped.
    /// In addition to this `node` may not be added to another other list before
    /// it is removed from the current one.
    pub unsafe fn add_front(&mut self, node: &mut ListNode<T>) {
        node.next = self.head;
        node.prev = None;
        if let Some(mut head) = self.head {
            head.as_mut().prev = Some(node.into())
        };
        self.head = Some(node.into());
        if self.tail.is_none() {
            self.tail = Some(node.into());
        }
    }

    /// Inserts a node into the list in a way that the list keeps being sorted.
    /// Safety: This function is only safe as long as `node` is guaranteed to
    /// get removed from the list before it gets moved or dropped.
    /// In addition to this `node` may not be added to another other list before
    /// it is removed from the current one.
    pub unsafe fn add_sorted(&mut self, node: &mut ListNode<T>)
    where
        T: PartialOrd,
    {
        if self.head.is_none() {
            // First node in the list
            self.head = Some(node.into());
            self.tail = Some(node.into());
            return;
        }

        let mut prev: Option<NonNull<ListNode<T>>> = None;
        let mut current = self.head;

        while let Some(mut current_node) = current {
            if node.data < current_node.as_ref().data {
                // Need to insert before the current node
                current_node.as_mut().prev = Some(node.into());
                match prev {
                    Some(mut prev) => {
                        prev.as_mut().next = Some(node.into());
                    }
                    None => {
                        // We are inserting at the beginning of the list
                        self.head = Some(node.into());
                    }
                }
                node.next = current;
                node.prev = prev;
                return;
            }
            prev = current;
            current = current_node.as_ref().next;
        }

        // We looped through the whole list and the nodes data is bigger or equal
        // than everything we found up to now.
        // Insert at the end. Since we checked before that the list isn't empty,
        // tail always has a value.
        node.prev = self.tail;
        node.next = None;
        self.tail.as_mut().unwrap().as_mut().next = Some(node.into());
        self.tail = Some(node.into());
    }

    /// Returns the first node in the linked list without removing it from the list
    /// The function is only safe as long as valid pointers are stored inside
    /// the linked list.
    /// The returned pointer is only guaranteed to be valid as long as the list
    /// is not mutated
    pub fn peek_first(&self) -> Option<&mut ListNode<T>> {
        // Safety: When the node was inserted it was promised that it is alive
        // until it gets removed from the list.
        // The returned node has a pointer which constrains it to the lifetime
        // of the list. This is ok, since the Node is supposed to outlive
        // its insertion in the list.
        unsafe {
            self.head
                .map(|mut node| &mut *(node.as_mut() as *mut ListNode<T>))
        }
    }

    /// Returns the last node in the linked list without removing it from the list
    /// The function is only safe as long as valid pointers are stored inside
    /// the linked list.
    /// The returned pointer is only guaranteed to be valid as long as the list
    /// is not mutated
    pub fn peek_last(&self) -> Option<&mut ListNode<T>> {
        // Safety: When the node was inserted it was promised that it is alive
        // until it gets removed from the list.
        // The returned node has a pointer which constrains it to the lifetime
        // of the list. This is ok, since the Node is supposed to outlive
        // its insertion in the list.
        unsafe {
            self.tail
                .map(|mut node| &mut *(node.as_mut() as *mut ListNode<T>))
        }
    }

    /// Removes the first node from the linked list
    pub fn remove_first(&mut self) -> Option<&mut ListNode<T>> {
        #![allow(clippy::debug_assert_with_mut_call)]

        // Safety: When the node was inserted it was promised that it is alive
        // until it gets removed from the list
        unsafe {
            let mut head = self.head?;
            self.head = head.as_mut().next;

            let first_ref = head.as_mut();
            match first_ref.next {
                None => {
                    // This was the only node in the list
                    debug_assert_eq!(Some(first_ref.into()), self.tail);
                    self.tail = None;
                }
                Some(mut next) => {
                    next.as_mut().prev = None;
                }
            }

            first_ref.prev = None;
            first_ref.next = None;
            Some(&mut *(first_ref as *mut ListNode<T>))
        }
    }

    /// Removes the last node from the linked list and returns it
    pub fn remove_last(&mut self) -> Option<&mut ListNode<T>> {
        #![allow(clippy::debug_assert_with_mut_call)]

        // Safety: When the node was inserted it was promised that it is alive
        // until it gets removed from the list
        unsafe {
            let mut tail = self.tail?;
            self.tail = tail.as_mut().prev;

            let last_ref = tail.as_mut();
            match last_ref.prev {
                None => {
                    // This was the last node in the list
                    debug_assert_eq!(Some(last_ref.into()), self.head);
                    self.head = None;
                }
                Some(mut prev) => {
                    prev.as_mut().next = None;
                }
            }

            last_ref.prev = None;
            last_ref.next = None;
            Some(&mut *(last_ref as *mut ListNode<T>))
        }
    }

    /// Returns whether the linked list doesn not contain any node
    pub fn is_empty(&self) -> bool {
        if self.head.is_some() {
            return false;
        }

        debug_assert!(self.tail.is_none());
        true
    }

    /// Removes the given `node` from the linked list.
    /// Returns whether the `node` was removed.
    /// It is also only safe if it is known that the `node` is either part of this
    /// list, or of no list at all. If `node` is part of another list, the
    /// behavior is undefined.
    pub unsafe fn remove(&mut self, node: &mut ListNode<T>) -> bool {
        #![allow(clippy::debug_assert_with_mut_call)]

        match node.prev {
            None => {
                // This might be the first node in the list. If it is not, the
                // node is not in the list at all. Since our precondition is that
                // the node must either be in this list or in no list, we check that
                // the node is really in no list.
                if self.head != Some(node.into()) {
                    debug_assert!(node.next.is_none());
                    return false;
                }
                self.head = node.next;
            }
            Some(mut prev) => {
                debug_assert_eq!(prev.as_ref().next, Some(node.into()));
                prev.as_mut().next = node.next;
            }
        }

        match node.next {
            None => {
                // This must be the last node in our list. Otherwise the list
                // is inconsistent.
                debug_assert_eq!(self.tail, Some(node.into()));
                self.tail = node.prev;
            }
            Some(mut next) => {
                debug_assert_eq!(next.as_mut().prev, Some(node.into()));
                next.as_mut().prev = node.prev;
            }
        }

        node.next = None;
        node.prev = None;

        true
    }

    /// Drains the list iby calling a callback on each list node
    ///
    /// The method does not return an iterator since stopping or deferring
    /// draining the list is not permitted. If the method would push nodes to
    /// an iterator we could not guarantee that the nodes do not get utilized
    /// after having been removed from the list anymore.
    pub fn drain<F>(&mut self, mut func: F)
    where
        F: FnMut(&mut ListNode<T>),
    {
        let mut current = self.head;
        self.head = None;
        self.tail = None;

        while let Some(mut node) = current {
            // Safety: The nodes have not been removed from the list yet and must
            // therefore contain valid data. The nodes can also not be added to
            // the list again during iteration, since the list is mutably borrowed.
            unsafe {
                let node_ref = node.as_mut();
                current = node_ref.next;

                node_ref.next = None;
                node_ref.prev = None;

                // Note: We do not reset the pointers from the next element in the
                // list to the current one since we will iterate over the whole
                // list anyway, and therefore clean up all pointers.

                func(node_ref);
            }
        }
    }

    /// Drains the list in reverse order by calling a callback on each list node
    ///
    /// The method does not return an iterator since stopping or deferring
    /// draining the list is not permitted. If the method would push nodes to
    /// an iterator we could not guarantee that the nodes do not get utilized
    /// after having been removed from the list anymore.
    pub fn reverse_drain<F>(&mut self, mut func: F)
    where
        F: FnMut(&mut ListNode<T>),
    {
        let mut current = self.tail;
        self.head = None;
        self.tail = None;

        while let Some(mut node) = current {
            // Safety: The nodes have not been removed from the list yet and must
            // therefore contain valid data. The nodes can also not be added to
            // the list again during iteration, since the list is mutably borrowed.
            unsafe {
                let node_ref = node.as_mut();
                current = node_ref.prev;

                node_ref.next = None;
                node_ref.prev = None;

                // Note: We do not reset the pointers from the next element in the
                // list to the current one since we will iterate over the whole
                // list anyway, and therefore clean up all pointers.

                func(node_ref);
            }
        }
    }
}

#[cfg(all(test, feature = "std"))] // Tests make use of Vec at the moment
mod tests {
    use super::*;

    fn collect_list<T: Copy>(mut list: LinkedList<T>) -> Vec<T> {
        let mut result = Vec::new();
        list.drain(|node| {
            result.push(**node);
        });
        result
    }

    fn collect_reverse_list<T: Copy>(mut list: LinkedList<T>) -> Vec<T> {
        let mut result = Vec::new();
        list.reverse_drain(|node| {
            result.push(**node);
        });
        result
    }

    unsafe fn add_nodes(list: &mut LinkedList<i32>, nodes: &mut [&mut ListNode<i32>]) {
        for node in nodes.iter_mut() {
            list.add_front(node);
        }
    }

    unsafe fn assert_clean<T>(node: &mut ListNode<T>) {
        assert!(node.next.is_none());
        assert!(node.prev.is_none());
    }

    #[test]
    fn insert_and_iterate() {
        unsafe {
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            let mut setup = |list: &mut LinkedList<i32>| {
                assert_eq!(true, list.is_empty());
                list.add_front(&mut c);
                assert_eq!(31, **list.peek_first().unwrap());
                assert_eq!(false, list.is_empty());
                list.add_front(&mut b);
                assert_eq!(7, **list.peek_first().unwrap());
                list.add_front(&mut a);
                assert_eq!(5, **list.peek_first().unwrap());
            };

            let mut list = LinkedList::new();
            setup(&mut list);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31].to_vec(), items);

            let mut list = LinkedList::new();
            setup(&mut list);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([31, 7, 5].to_vec(), items);
        }
    }

    #[test]
    fn add_sorted() {
        unsafe {
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);
            let mut d = ListNode::new(99);

            let mut list = LinkedList::new();
            list.add_sorted(&mut a);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5].to_vec(), items);

            let mut list = LinkedList::new();
            list.add_sorted(&mut a);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut c, &mut b]);
            list.add_sorted(&mut a);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31, 99].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut c, &mut b]);
            list.add_sorted(&mut a);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([99, 31, 7, 5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut c, &mut a]);
            list.add_sorted(&mut b);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31, 99].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut c, &mut a]);
            list.add_sorted(&mut b);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([99, 31, 7, 5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut b, &mut a]);
            list.add_sorted(&mut c);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31, 99].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut d, &mut b, &mut a]);
            list.add_sorted(&mut c);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([99, 31, 7, 5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            list.add_sorted(&mut d);
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31, 99].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            list.add_sorted(&mut d);
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([99, 31, 7, 5].to_vec(), items);
        }
    }

    #[test]
    fn drain_and_collect() {
        unsafe {
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);

            let taken_items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7, 31].to_vec(), taken_items);
        }
    }

    #[test]
    fn peek_last() {
        unsafe {
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);

            let last = list.peek_last();
            assert_eq!(31, **last.unwrap());
            list.remove_last();

            let last = list.peek_last();
            assert_eq!(7, **last.unwrap());
            list.remove_last();

            let last = list.peek_last();
            assert_eq!(5, **last.unwrap());
            list.remove_last();

            let last = list.peek_last();
            assert!(last.is_none());
        }
    }

    #[test]
    fn remove_first() {
        unsafe {
            // We iterate forward and backwards through the manipulated lists
            // to make sure pointers in both directions are still ok.
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert_eq!([7, 31].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([31, 7].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut b, &mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert_eq!([7].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut b, &mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([7].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert!(items.is_empty());

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut a]);
            let removed = list.remove_first().unwrap();
            assert_clean(removed);
            assert!(list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert!(items.is_empty());
        }
    }

    #[test]
    fn remove_last() {
        unsafe {
            // We iterate forward and backwards through the manipulated lists
            // to make sure pointers in both directions are still ok.
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5, 7].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([7, 5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut b, &mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert_eq!([5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut b, &mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(!list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert_eq!([5].to_vec(), items);

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(list.is_empty());
            let items: Vec<i32> = collect_list(list);
            assert!(items.is_empty());

            let mut list = LinkedList::new();
            add_nodes(&mut list, &mut [&mut a]);
            let removed = list.remove_last().unwrap();
            assert_clean(removed);
            assert!(list.is_empty());
            let items: Vec<i32> = collect_reverse_list(list);
            assert!(items.is_empty());
        }
    }

    #[test]
    fn remove_by_address() {
        unsafe {
            let mut a = ListNode::new(5);
            let mut b = ListNode::new(7);
            let mut c = ListNode::new(31);

            {
                // Remove first
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut a));
                assert_clean((&mut a).into());
                // a should be no longer there and can't be removed twice
                assert_eq!(false, list.remove(&mut a));
                assert_eq!(Some((&mut b).into()), list.head);
                assert_eq!(Some((&mut c).into()), b.next);
                assert_eq!(Some((&mut b).into()), c.prev);
                let items: Vec<i32> = collect_list(list);
                assert_eq!([7, 31].to_vec(), items);

                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut a));
                assert_clean((&mut a).into());
                // a should be no longer there and can't be removed twice
                assert_eq!(false, list.remove(&mut a));
                assert_eq!(Some((&mut c).into()), b.next);
                assert_eq!(Some((&mut b).into()), c.prev);
                let items: Vec<i32> = collect_reverse_list(list);
                assert_eq!([31, 7].to_vec(), items);
            }

            {
                // Remove middle
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut b));
                assert_clean((&mut b).into());
                assert_eq!(Some((&mut c).into()), a.next);
                assert_eq!(Some((&mut a).into()), c.prev);
                let items: Vec<i32> = collect_list(list);
                assert_eq!([5, 31].to_vec(), items);

                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut b));
                assert_clean((&mut b).into());
                assert_eq!(Some((&mut c).into()), a.next);
                assert_eq!(Some((&mut a).into()), c.prev);
                let items: Vec<i32> = collect_reverse_list(list);
                assert_eq!([31, 5].to_vec(), items);
            }

            {
                // Remove last
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut c));
                assert_clean((&mut c).into());
                assert!(b.next.is_none());
                assert_eq!(Some((&mut b).into()), list.tail);
                let items: Vec<i32> = collect_list(list);
                assert_eq!([5, 7].to_vec(), items);

                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut c, &mut b, &mut a]);
                assert_eq!(true, list.remove(&mut c));
                assert_clean((&mut c).into());
                assert!(b.next.is_none());
                assert_eq!(Some((&mut b).into()), list.tail);
                let items: Vec<i32> = collect_reverse_list(list);
                assert_eq!([7, 5].to_vec(), items);
            }

            {
                // Remove first of two
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut b, &mut a]);
                assert_eq!(true, list.remove(&mut a));
                assert_clean((&mut a).into());
                // a should be no longer there and can't be removed twice
                assert_eq!(false, list.remove(&mut a));
                assert_eq!(Some((&mut b).into()), list.head);
                assert_eq!(Some((&mut b).into()), list.tail);
                assert!(b.next.is_none());
                assert!(b.prev.is_none());
                let items: Vec<i32> = collect_list(list);
                assert_eq!([7].to_vec(), items);

                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut b, &mut a]);
                assert_eq!(true, list.remove(&mut a));
                assert_clean((&mut a).into());
                // a should be no longer there and can't be removed twice
                assert_eq!(false, list.remove(&mut a));
                assert_eq!(Some((&mut b).into()), list.head);
                assert_eq!(Some((&mut b).into()), list.tail);
                assert!(b.next.is_none());
                assert!(b.prev.is_none());
                let items: Vec<i32> = collect_reverse_list(list);
                assert_eq!([7].to_vec(), items);
            }

            {
                // Remove last of two
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut b, &mut a]);
                assert_eq!(true, list.remove(&mut b));
                assert_clean((&mut b).into());
                assert_eq!(Some((&mut a).into()), list.head);
                assert_eq!(Some((&mut a).into()), list.tail);
                assert!(a.next.is_none());
                assert!(a.prev.is_none());
                let items: Vec<i32> = collect_list(list);
                assert_eq!([5].to_vec(), items);

                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut b, &mut a]);
                assert_eq!(true, list.remove(&mut b));
                assert_clean((&mut b).into());
                assert_eq!(Some((&mut a).into()), list.head);
                assert_eq!(Some((&mut a).into()), list.tail);
                assert!(a.next.is_none());
                assert!(a.prev.is_none());
                let items: Vec<i32> = collect_reverse_list(list);
                assert_eq!([5].to_vec(), items);
            }

            {
                // Remove last item
                let mut list = LinkedList::new();
                add_nodes(&mut list, &mut [&mut a]);
                assert_eq!(true, list.remove(&mut a));
                assert_clean((&mut a).into());
                assert!(list.head.is_none());
                assert!(list.tail.is_none());
                let items: Vec<i32> = collect_list(list);
                assert!(items.is_empty());
            }

            {
                // Remove missing
                let mut list = LinkedList::new();
                list.add_front(&mut b);
                list.add_front(&mut a);
                assert_eq!(false, list.remove(&mut c));
            }
        }
    }
}