1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
use crate::sync::batch_semaphore::Semaphore; use std::cell::UnsafeCell; use std::fmt; use std::marker; use std::mem; use std::ops; #[cfg(not(loom))] const MAX_READS: usize = 32; #[cfg(loom)] const MAX_READS: usize = 10; /// An asynchronous reader-writer lock. /// /// This type of lock allows a number of readers or at most one writer at any /// point in time. The write portion of this lock typically allows modification /// of the underlying data (exclusive access) and the read portion of this lock /// typically allows for read-only access (shared access). /// /// In comparison, a [`Mutex`] does not distinguish between readers or writers /// that acquire the lock, therefore causing any tasks waiting for the lock to /// become available to yield. An `RwLock` will allow any number of readers to /// acquire the lock as long as a writer is not holding the lock. /// /// The priority policy of Tokio's read-write lock is _fair_ (or /// [_write-preferring_]), in order to ensure that readers cannot starve /// writers. Fairness is ensured using a first-in, first-out queue for the tasks /// awaiting the lock; if a task that wishes to acquire the write lock is at the /// head of the queue, read locks will not be given out until the write lock has /// been released. This is in contrast to the Rust standard library's /// `std::sync::RwLock`, where the priority policy is dependent on the /// operating system's implementation. /// /// The type parameter `T` represents the data that this lock protects. It is /// required that `T` satisfies [`Send`] to be shared across threads. The RAII guards /// returned from the locking methods implement [`Deref`](trait@std::ops::Deref) /// (and [`DerefMut`](trait@std::ops::DerefMut) /// for the `write` methods) to allow access to the content of the lock. /// /// # Examples /// /// ``` /// use tokio::sync::RwLock; /// /// #[tokio::main] /// async fn main() { /// let lock = RwLock::new(5); /// /// // many reader locks can be held at once /// { /// let r1 = lock.read().await; /// let r2 = lock.read().await; /// assert_eq!(*r1, 5); /// assert_eq!(*r2, 5); /// } // read locks are dropped at this point /// /// // only one write lock may be held, however /// { /// let mut w = lock.write().await; /// *w += 1; /// assert_eq!(*w, 6); /// } // write lock is dropped here /// } /// ``` /// /// [`Mutex`]: struct@super::Mutex /// [`RwLock`]: struct@RwLock /// [`RwLockReadGuard`]: struct@RwLockReadGuard /// [`RwLockWriteGuard`]: struct@RwLockWriteGuard /// [`Send`]: trait@std::marker::Send /// [_write-preferring_]: https://en.wikipedia.org/wiki/Readers%E2%80%93writer_lock#Priority_policies #[derive(Debug)] pub struct RwLock<T: ?Sized> { //semaphore to coordinate read and write access to T s: Semaphore, //inner data T c: UnsafeCell<T>, } /// RAII structure used to release the shared read access of a lock when /// dropped. /// /// This structure is created by the [`read`] method on /// [`RwLock`]. /// /// [`read`]: method@RwLock::read /// [`RwLock`]: struct@RwLock pub struct RwLockReadGuard<'a, T: ?Sized> { s: &'a Semaphore, data: *const T, marker: marker::PhantomData<&'a T>, } impl<'a, T> RwLockReadGuard<'a, T> { /// Make a new `RwLockReadGuard` for a component of the locked data. /// /// This operation cannot fail as the `RwLockReadGuard` passed in already /// locked the data. /// /// This is an associated function that needs to be /// used as `RwLockReadGuard::map(...)`. A method would interfere with /// methods of the same name on the contents of the locked data. /// /// This is an asynchronous version of [`RwLockReadGuard::map`] from the /// [`parking_lot` crate]. /// /// [`RwLockReadGuard::map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockReadGuard.html#method.map /// [`parking_lot` crate]: https://crates.io/crates/parking_lot /// /// # Examples /// /// ``` /// use tokio::sync::{RwLock, RwLockReadGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = RwLock::new(Foo(1)); /// /// let guard = lock.read().await; /// let guard = RwLockReadGuard::map(guard, |f| &f.0); /// /// assert_eq!(1, *guard); /// # } /// ``` #[inline] pub fn map<F, U: ?Sized>(this: Self, f: F) -> RwLockReadGuard<'a, U> where F: FnOnce(&T) -> &U, { let data = f(&*this) as *const U; let s = this.s; // NB: Forget to avoid drop impl from being called. mem::forget(this); RwLockReadGuard { s, data, marker: marker::PhantomData, } } /// Attempts to make a new [`RwLockReadGuard`] for a component of the /// locked data. The original guard is returned if the closure returns /// `None`. /// /// This operation cannot fail as the `RwLockReadGuard` passed in already /// locked the data. /// /// This is an associated function that needs to be used as /// `RwLockReadGuard::try_map(..)`. A method would interfere with methods of the /// same name on the contents of the locked data. /// /// This is an asynchronous version of [`RwLockReadGuard::try_map`] from the /// [`parking_lot` crate]. /// /// [`RwLockReadGuard::try_map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockReadGuard.html#method.try_map /// [`parking_lot` crate]: https://crates.io/crates/parking_lot /// /// # Examples /// /// ``` /// use tokio::sync::{RwLock, RwLockReadGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = RwLock::new(Foo(1)); /// /// let guard = lock.read().await; /// let guard = RwLockReadGuard::try_map(guard, |f| Some(&f.0)).expect("should not fail"); /// /// assert_eq!(1, *guard); /// # } /// ``` #[inline] pub fn try_map<F, U: ?Sized>(this: Self, f: F) -> Result<RwLockReadGuard<'a, U>, Self> where F: FnOnce(&T) -> Option<&U>, { let data = match f(&*this) { Some(data) => data as *const U, None => return Err(this), }; let s = this.s; // NB: Forget to avoid drop impl from being called. mem::forget(this); Ok(RwLockReadGuard { s, data, marker: marker::PhantomData, }) } } impl<'a, T: ?Sized> fmt::Debug for RwLockReadGuard<'a, T> where T: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<'a, T: ?Sized> fmt::Display for RwLockReadGuard<'a, T> where T: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } impl<'a, T: ?Sized> Drop for RwLockReadGuard<'a, T> { fn drop(&mut self) { self.s.release(1); } } /// RAII structure used to release the exclusive write access of a lock when /// dropped. /// /// This structure is created by the [`write`] and method /// on [`RwLock`]. /// /// [`write`]: method@RwLock::write /// [`RwLock`]: struct@RwLock pub struct RwLockWriteGuard<'a, T: ?Sized> { s: &'a Semaphore, data: *mut T, marker: marker::PhantomData<&'a mut T>, } impl<'a, T: ?Sized> RwLockWriteGuard<'a, T> { /// Make a new `RwLockWriteGuard` for a component of the locked data. /// /// This operation cannot fail as the `RwLockWriteGuard` passed in already /// locked the data. /// /// This is an associated function that needs to be used as /// `RwLockWriteGuard::map(..)`. A method would interfere with methods of /// the same name on the contents of the locked data. /// /// This is an asynchronous version of [`RwLockWriteGuard::map`] from the /// [`parking_lot` crate]. /// /// [`RwLockWriteGuard::map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockWriteGuard.html#method.map /// [`parking_lot` crate]: https://crates.io/crates/parking_lot /// /// # Examples /// /// ``` /// use tokio::sync::{RwLock, RwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = RwLock::new(Foo(1)); /// /// { /// let mut mapped = RwLockWriteGuard::map(lock.write().await, |f| &mut f.0); /// *mapped = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn map<F, U: ?Sized>(mut this: Self, f: F) -> RwLockWriteGuard<'a, U> where F: FnOnce(&mut T) -> &mut U, { let data = f(&mut *this) as *mut U; let s = this.s; // NB: Forget to avoid drop impl from being called. mem::forget(this); RwLockWriteGuard { s, data, marker: marker::PhantomData, } } /// Attempts to make a new [`RwLockWriteGuard`] for a component of /// the locked data. The original guard is returned if the closure returns /// `None`. /// /// This operation cannot fail as the `RwLockWriteGuard` passed in already /// locked the data. /// /// This is an associated function that needs to be /// used as `RwLockWriteGuard::try_map(...)`. A method would interfere with /// methods of the same name on the contents of the locked data. /// /// This is an asynchronous version of [`RwLockWriteGuard::try_map`] from /// the [`parking_lot` crate]. /// /// [`RwLockWriteGuard::try_map`]: https://docs.rs/lock_api/latest/lock_api/struct.RwLockWriteGuard.html#method.try_map /// [`parking_lot` crate]: https://crates.io/crates/parking_lot /// /// # Examples /// /// ``` /// use tokio::sync::{RwLock, RwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = RwLock::new(Foo(1)); /// /// { /// let guard = lock.write().await; /// let mut guard = RwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail"); /// *guard = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn try_map<F, U: ?Sized>(mut this: Self, f: F) -> Result<RwLockWriteGuard<'a, U>, Self> where F: FnOnce(&mut T) -> Option<&mut U>, { let data = match f(&mut *this) { Some(data) => data as *mut U, None => return Err(this), }; let s = this.s; // NB: Forget to avoid drop impl from being called. mem::forget(this); Ok(RwLockWriteGuard { s, data, marker: marker::PhantomData, }) } /// Atomically downgrades a write lock into a read lock without allowing /// any writers to take exclusive access of the lock in the meantime. /// /// **Note:** This won't *necessarily* allow any additional readers to acquire /// locks, since [`RwLock`] is fair and it is possible that a writer is next /// in line. /// /// Returns an RAII guard which will drop the read access of this rwlock /// when dropped. /// /// # Examples /// /// ``` /// # use tokio::sync::RwLock; /// # use std::sync::Arc; /// # /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(1)); /// /// let n = lock.write().await; /// /// let cloned_lock = lock.clone(); /// let handle = tokio::spawn(async move { /// *cloned_lock.write().await = 2; /// }); /// /// let n = n.downgrade(); /// assert_eq!(*n, 1, "downgrade is atomic"); /// /// drop(n); /// handle.await.unwrap(); /// assert_eq!(*lock.read().await, 2, "second writer obtained write lock"); /// # } /// ``` /// /// [`RwLock`]: struct@RwLock pub fn downgrade(self) -> RwLockReadGuard<'a, T> { let RwLockWriteGuard { s, data, .. } = self; // Release all but one of the permits held by the write guard s.release(MAX_READS - 1); // NB: Forget to avoid drop impl from being called. mem::forget(self); RwLockReadGuard { s, data, marker: marker::PhantomData, } } } impl<'a, T: ?Sized> fmt::Debug for RwLockWriteGuard<'a, T> where T: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<'a, T: ?Sized> fmt::Display for RwLockWriteGuard<'a, T> where T: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } impl<'a, T: ?Sized> Drop for RwLockWriteGuard<'a, T> { fn drop(&mut self) { self.s.release(MAX_READS); } } #[test] #[cfg(not(loom))] fn bounds() { fn check_send<T: Send>() {} fn check_sync<T: Sync>() {} fn check_unpin<T: Unpin>() {} // This has to take a value, since the async fn's return type is unnameable. fn check_send_sync_val<T: Send + Sync>(_t: T) {} check_send::<RwLock<u32>>(); check_sync::<RwLock<u32>>(); check_unpin::<RwLock<u32>>(); check_send::<RwLockReadGuard<'_, u32>>(); check_sync::<RwLockReadGuard<'_, u32>>(); check_unpin::<RwLockReadGuard<'_, u32>>(); check_send::<RwLockWriteGuard<'_, u32>>(); check_sync::<RwLockWriteGuard<'_, u32>>(); check_unpin::<RwLockWriteGuard<'_, u32>>(); let rwlock = RwLock::new(0); check_send_sync_val(rwlock.read()); check_send_sync_val(rwlock.write()); } // As long as T: Send + Sync, it's fine to send and share RwLock<T> between threads. // If T were not Send, sending and sharing a RwLock<T> would be bad, since you can access T through // RwLock<T>. unsafe impl<T> Send for RwLock<T> where T: ?Sized + Send {} unsafe impl<T> Sync for RwLock<T> where T: ?Sized + Send + Sync {} // NB: These impls need to be explicit since we're storing a raw pointer. // Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over // `T` is `Send`. unsafe impl<T> Send for RwLockReadGuard<'_, T> where T: ?Sized + Sync {} unsafe impl<T> Sync for RwLockReadGuard<'_, T> where T: ?Sized + Send + Sync {} unsafe impl<T> Sync for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {} // Safety: Stores a raw pointer to `T`, so if `T` is `Sync`, the lock guard over // `T` is `Send` - but since this is also provides mutable access, we need to // make sure that `T` is `Send` since its value can be sent across thread // boundaries. unsafe impl<T> Send for RwLockWriteGuard<'_, T> where T: ?Sized + Send + Sync {} impl<T: ?Sized> RwLock<T> { /// Creates a new instance of an `RwLock<T>` which is unlocked. /// /// # Examples /// /// ``` /// use tokio::sync::RwLock; /// /// let lock = RwLock::new(5); /// ``` pub fn new(value: T) -> RwLock<T> where T: Sized, { RwLock { c: UnsafeCell::new(value), s: Semaphore::new(MAX_READS), } } /// Creates a new instance of an `RwLock<T>` which is unlocked. /// /// # Examples /// /// ``` /// use tokio::sync::RwLock; /// /// static LOCK: RwLock<i32> = RwLock::const_new(5); /// ``` #[cfg(all(feature = "parking_lot", not(all(loom, test))))] #[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))] pub const fn const_new(value: T) -> RwLock<T> where T: Sized, { RwLock { c: UnsafeCell::new(value), s: Semaphore::const_new(MAX_READS), } } /// Locks this rwlock with shared read access, causing the current task /// to yield until the lock has been acquired. /// /// The calling task will yield until there are no more writers which /// hold the lock. There may be other readers currently inside the lock when /// this method returns. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use tokio::sync::RwLock; /// /// #[tokio::main] /// async fn main() { /// let lock = Arc::new(RwLock::new(1)); /// let c_lock = lock.clone(); /// /// let n = lock.read().await; /// assert_eq!(*n, 1); /// /// tokio::spawn(async move { /// // While main has an active read lock, we acquire one too. /// let r = c_lock.read().await; /// assert_eq!(*r, 1); /// }).await.expect("The spawned task has paniced"); /// /// // Drop the guard after the spawned task finishes. /// drop(n); ///} /// ``` pub async fn read(&self) -> RwLockReadGuard<'_, T> { self.s.acquire(1).await.unwrap_or_else(|_| { // The semaphore was closed. but, we never explicitly close it, and we have a // handle to it through the Arc, which means that this can never happen. unreachable!() }); RwLockReadGuard { s: &self.s, data: self.c.get(), marker: marker::PhantomData, } } /// Locks this rwlock with exclusive write access, causing the current task /// to yield until the lock has been acquired. /// /// This function will not return while other writers or other readers /// currently have access to the lock. /// /// Returns an RAII guard which will drop the write access of this rwlock /// when dropped. /// /// # Examples /// /// ``` /// use tokio::sync::RwLock; /// /// #[tokio::main] /// async fn main() { /// let lock = RwLock::new(1); /// /// let mut n = lock.write().await; /// *n = 2; ///} /// ``` pub async fn write(&self) -> RwLockWriteGuard<'_, T> { self.s.acquire(MAX_READS as u32).await.unwrap_or_else(|_| { // The semaphore was closed. but, we never explicitly close it, and we have a // handle to it through the Arc, which means that this can never happen. unreachable!() }); RwLockWriteGuard { s: &self.s, data: self.c.get(), marker: marker::PhantomData, } } /// Returns a mutable reference to the underlying data. /// /// Since this call borrows the `RwLock` mutably, no actual locking needs to /// take place -- the mutable borrow statically guarantees no locks exist. /// /// # Examples /// /// ``` /// use tokio::sync::RwLock; /// /// fn main() { /// let mut lock = RwLock::new(1); /// /// let n = lock.get_mut(); /// *n = 2; /// } /// ``` pub fn get_mut(&mut self) -> &mut T { unsafe { // Safety: This is https://github.com/rust-lang/rust/pull/76936 &mut *self.c.get() } } /// Consumes the lock, returning the underlying data. pub fn into_inner(self) -> T where T: Sized, { self.c.into_inner() } } impl<T: ?Sized> ops::Deref for RwLockReadGuard<'_, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.data } } } impl<T: ?Sized> ops::Deref for RwLockWriteGuard<'_, T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.data } } } impl<T: ?Sized> ops::DerefMut for RwLockWriteGuard<'_, T> { fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.data } } } impl<T> From<T> for RwLock<T> { fn from(s: T) -> Self { Self::new(s) } } impl<T: ?Sized> Default for RwLock<T> where T: Default, { fn default() -> Self { Self::new(T::default()) } }