1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// See the README in this directory for an explanation of the Teddy algorithm.

use std::cmp;
use std::collections::BTreeMap;
use std::fmt;

use packed::pattern::{PatternID, Patterns};
use packed::teddy::Teddy;

/// A builder for constructing a Teddy matcher.
///
/// The builder primarily permits fine grained configuration of the Teddy
/// matcher. Most options are made only available for testing/benchmarking
/// purposes. In reality, options are automatically determined by the nature
/// and number of patterns given to the builder.
#[derive(Clone, Debug)]
pub struct Builder {
    /// When none, this is automatically determined. Otherwise, `false` means
    /// slim Teddy is used (8 buckets) and `true` means fat Teddy is used
    /// (16 buckets). Fat Teddy requires AVX2, so if that CPU feature isn't
    /// available and Fat Teddy was requested, no matcher will be built.
    fat: Option<bool>,
    /// When none, this is automatically determined. Otherwise, `false` means
    /// that 128-bit vectors will be used (up to SSSE3 instructions) where as
    /// `true` means that 256-bit vectors will be used. As with `fat`, if
    /// 256-bit vectors are requested and they aren't available, then a
    /// searcher will not be built.
    avx: Option<bool>,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder::new()
    }
}

impl Builder {
    /// Create a new builder for configuring a Teddy matcher.
    pub fn new() -> Builder {
        Builder { fat: None, avx: None }
    }

    /// Build a matcher for the set of patterns given. If a matcher could not
    /// be built, then `None` is returned.
    ///
    /// Generally, a matcher isn't built if the necessary CPU features aren't
    /// available, an unsupported target or if the searcher is believed to be
    /// slower than standard techniques (i.e., if there are too many literals).
    pub fn build(&self, patterns: &Patterns) -> Option<Teddy> {
        self.build_imp(patterns)
    }

    /// Require the use of Fat (true) or Slim (false) Teddy. Fat Teddy uses
    /// 16 buckets where as Slim Teddy uses 8 buckets. More buckets are useful
    /// for a larger set of literals.
    ///
    /// `None` is the default, which results in an automatic selection based
    /// on the number of literals and available CPU features.
    pub fn fat(&mut self, yes: Option<bool>) -> &mut Builder {
        self.fat = yes;
        self
    }

    /// Request the use of 256-bit vectors (true) or 128-bit vectors (false).
    /// Generally, a larger vector size is better since it either permits
    /// matching more patterns or matching more bytes in the haystack at once.
    ///
    /// `None` is the default, which results in an automatic selection based on
    /// the number of literals and available CPU features.
    pub fn avx(&mut self, yes: Option<bool>) -> &mut Builder {
        self.avx = yes;
        self
    }

    fn build_imp(&self, patterns: &Patterns) -> Option<Teddy> {
        use packed::teddy::runtime;

        // Most of the logic here is just about selecting the optimal settings,
        // or perhaps even rejecting construction altogether. The choices
        // we have are: fat (avx only) or not, ssse3 or avx2, and how many
        // patterns we allow ourselves to search. Additionally, for testing
        // and benchmarking, we permit callers to try to "force" a setting,
        // and if the setting isn't allowed (e.g., forcing AVX when AVX isn't
        // available), then we bail and return nothing.

        if patterns.len() > 64 {
            return None;
        }
        let has_ssse3 = is_x86_feature_detected!("ssse3");
        let has_avx = is_x86_feature_detected!("avx2");
        let avx = if self.avx == Some(true) {
            if !has_avx {
                return None;
            }
            true
        } else if self.avx == Some(false) {
            if !has_ssse3 {
                return None;
            }
            false
        } else if !has_ssse3 && !has_avx {
            return None;
        } else {
            has_avx
        };
        let fat = match self.fat {
            None => avx && patterns.len() > 32,
            Some(false) => false,
            Some(true) if !avx => return None,
            Some(true) => true,
        };

        let mut compiler = Compiler::new(patterns, fat);
        compiler.compile();
        let Compiler { buckets, masks, .. } = compiler;
        // SAFETY: It is required that the builder only produce Teddy matchers
        // that are allowed to run on the current CPU, since we later assume
        // that the presence of (for example) TeddySlim1Mask256 means it is
        // safe to call functions marked with the `avx2` target feature.
        match (masks.len(), avx, fat) {
            (1, false, _) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim1Mask128(
                    runtime::TeddySlim1Mask128 {
                        mask1: runtime::Mask128::new(masks[0]),
                    },
                ),
            }),
            (1, true, false) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim1Mask256(
                    runtime::TeddySlim1Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                    },
                ),
            }),
            (1, true, true) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddyFat1Mask256(
                    runtime::TeddyFat1Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                    },
                ),
            }),
            (2, false, _) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim2Mask128(
                    runtime::TeddySlim2Mask128 {
                        mask1: runtime::Mask128::new(masks[0]),
                        mask2: runtime::Mask128::new(masks[1]),
                    },
                ),
            }),
            (2, true, false) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim2Mask256(
                    runtime::TeddySlim2Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                        mask2: runtime::Mask256::new(masks[1]),
                    },
                ),
            }),
            (2, true, true) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddyFat2Mask256(
                    runtime::TeddyFat2Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                        mask2: runtime::Mask256::new(masks[1]),
                    },
                ),
            }),
            (3, false, _) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim3Mask128(
                    runtime::TeddySlim3Mask128 {
                        mask1: runtime::Mask128::new(masks[0]),
                        mask2: runtime::Mask128::new(masks[1]),
                        mask3: runtime::Mask128::new(masks[2]),
                    },
                ),
            }),
            (3, true, false) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddySlim3Mask256(
                    runtime::TeddySlim3Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                        mask2: runtime::Mask256::new(masks[1]),
                        mask3: runtime::Mask256::new(masks[2]),
                    },
                ),
            }),
            (3, true, true) => Some(Teddy {
                buckets,
                max_pattern_id: patterns.max_pattern_id(),
                exec: runtime::Exec::TeddyFat3Mask256(
                    runtime::TeddyFat3Mask256 {
                        mask1: runtime::Mask256::new(masks[0]),
                        mask2: runtime::Mask256::new(masks[1]),
                        mask3: runtime::Mask256::new(masks[2]),
                    },
                ),
            }),
            _ => unreachable!(),
        }
    }
}

/// A compiler is in charge of allocating patterns into buckets and generating
/// the masks necessary for searching.
#[derive(Clone)]
struct Compiler<'p> {
    patterns: &'p Patterns,
    buckets: Vec<Vec<PatternID>>,
    masks: Vec<Mask>,
}

impl<'p> Compiler<'p> {
    /// Create a new Teddy compiler for the given patterns. If `fat` is true,
    /// then 16 buckets will be used instead of 8.
    ///
    /// This panics if any of the patterns given are empty.
    fn new(patterns: &'p Patterns, fat: bool) -> Compiler<'p> {
        let mask_len = cmp::min(3, patterns.minimum_len());
        assert!(1 <= mask_len && mask_len <= 3);

        Compiler {
            patterns,
            buckets: vec![vec![]; if fat { 16 } else { 8 }],
            masks: vec![Mask::default(); mask_len],
        }
    }

    /// Compile the patterns in this compiler into buckets and masks.
    fn compile(&mut self) {
        let mut lonibble_to_bucket: BTreeMap<Vec<u8>, usize> = BTreeMap::new();
        for (id, pattern) in self.patterns.iter() {
            // We try to be slightly clever in how we assign patterns into
            // buckets. Generally speaking, we want patterns with the same
            // prefix to be in the same bucket, since it minimizes the amount
            // of time we spend churning through buckets in the verification
            // step.
            //
            // So we could assign patterns with the same N-prefix (where N
            // is the size of the mask, which is one of {1, 2, 3}) to the
            // same bucket. However, case insensitive searches are fairly
            // common, so we'd for example, ideally want to treat `abc` and
            // `ABC` as if they shared the same prefix. ASCII has the nice
            // property that the lower 4 bits of A and a are the same, so we
            // therefore group patterns with the same low-nybbe-N-prefix into
            // the same bucket.
            //
            // MOREOVER, this is actually necessary for correctness! In
            // particular, by grouping patterns with the same prefix into the
            // same bucket, we ensure that we preserve correct leftmost-first
            // and leftmost-longest match semantics. In addition to the fact
            // that `patterns.iter()` iterates in the correct order, this
            // guarantees that all possible ambiguous matches will occur in
            // the same bucket. The verification routine could be adjusted to
            // support correct leftmost match semantics regardless of bucket
            // allocation, but that results in a performance hit. It's much
            // nicer to be able to just stop as soon as a match is found.
            let lonybs = pattern.low_nybbles(self.masks.len());
            if let Some(&bucket) = lonibble_to_bucket.get(&lonybs) {
                self.buckets[bucket].push(id);
            } else {
                // N.B. We assign buckets in reverse because it shouldn't have
                // any influence on performance, but it does make it harder to
                // get leftmost match semantics accidentally correct.
                let bucket = (self.buckets.len() - 1)
                    - (id as usize % self.buckets.len());
                self.buckets[bucket].push(id);
                lonibble_to_bucket.insert(lonybs, bucket);
            }
        }
        for (bucket_index, bucket) in self.buckets.iter().enumerate() {
            for &pat_id in bucket {
                let pat = self.patterns.get(pat_id);
                for (i, mask) in self.masks.iter_mut().enumerate() {
                    if self.buckets.len() == 8 {
                        mask.add_slim(bucket_index as u8, pat.bytes()[i]);
                    } else {
                        mask.add_fat(bucket_index as u8, pat.bytes()[i]);
                    }
                }
            }
        }
    }
}

impl<'p> fmt::Debug for Compiler<'p> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut buckets = vec![vec![]; self.buckets.len()];
        for (i, bucket) in self.buckets.iter().enumerate() {
            for &patid in bucket {
                buckets[i].push(self.patterns.get(patid));
            }
        }
        f.debug_struct("Compiler")
            .field("buckets", &buckets)
            .field("masks", &self.masks)
            .finish()
    }
}

/// Mask represents the low and high nybble masks that will be used during
/// search. Each mask is 32 bytes wide, although only the first 16 bytes are
/// used for the SSSE3 runtime.
///
/// Each byte in the mask corresponds to a 8-bit bitset, where bit `i` is set
/// if and only if the corresponding nybble is in the ith bucket. The index of
/// the byte (0-15, inclusive) corresponds to the nybble.
///
/// Each mask is used as the target of a shuffle, where the indices for the
/// shuffle are taken from the haystack. AND'ing the shuffles for both the
/// low and high masks together also results in 8-bit bitsets, but where bit
/// `i` is set if and only if the correspond *byte* is in the ith bucket.
///
/// During compilation, masks are just arrays. But during search, these masks
/// are represented as 128-bit or 256-bit vectors.
///
/// (See the README is this directory for more details.)
#[derive(Clone, Copy, Default)]
pub struct Mask {
    lo: [u8; 32],
    hi: [u8; 32],
}

impl Mask {
    /// Update this mask by adding the given byte to the given bucket. The
    /// given bucket must be in the range 0-7.
    ///
    /// This is for "slim" Teddy, where there are only 8 buckets.
    fn add_slim(&mut self, bucket: u8, byte: u8) {
        assert!(bucket < 8);

        let byte_lo = (byte & 0xF) as usize;
        let byte_hi = ((byte >> 4) & 0xF) as usize;
        // When using 256-bit vectors, we need to set this bucket assignment in
        // the low and high 128-bit portions of the mask. This allows us to
        // process 32 bytes at a time. Namely, AVX2 shuffles operate on each
        // of the 128-bit lanes, rather than the full 256-bit vector at once.
        self.lo[byte_lo] |= 1 << bucket;
        self.lo[byte_lo + 16] |= 1 << bucket;
        self.hi[byte_hi] |= 1 << bucket;
        self.hi[byte_hi + 16] |= 1 << bucket;
    }

    /// Update this mask by adding the given byte to the given bucket. The
    /// given bucket must be in the range 0-15.
    ///
    /// This is for "fat" Teddy, where there are 16 buckets.
    fn add_fat(&mut self, bucket: u8, byte: u8) {
        assert!(bucket < 16);

        let byte_lo = (byte & 0xF) as usize;
        let byte_hi = ((byte >> 4) & 0xF) as usize;
        // Unlike slim teddy, fat teddy only works with AVX2. For fat teddy,
        // the high 128 bits of our mask correspond to buckets 8-15, while the
        // low 128 bits correspond to buckets 0-7.
        if bucket < 8 {
            self.lo[byte_lo] |= 1 << bucket;
            self.hi[byte_hi] |= 1 << bucket;
        } else {
            self.lo[byte_lo + 16] |= 1 << (bucket % 8);
            self.hi[byte_hi + 16] |= 1 << (bucket % 8);
        }
    }

    /// Return the low 128 bits of the low-nybble mask.
    pub fn lo128(&self) -> [u8; 16] {
        let mut tmp = [0; 16];
        tmp.copy_from_slice(&self.lo[..16]);
        tmp
    }

    /// Return the full low-nybble mask.
    pub fn lo256(&self) -> [u8; 32] {
        self.lo
    }

    /// Return the low 128 bits of the high-nybble mask.
    pub fn hi128(&self) -> [u8; 16] {
        let mut tmp = [0; 16];
        tmp.copy_from_slice(&self.hi[..16]);
        tmp
    }

    /// Return the full high-nybble mask.
    pub fn hi256(&self) -> [u8; 32] {
        self.hi
    }
}

impl fmt::Debug for Mask {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (mut parts_lo, mut parts_hi) = (vec![], vec![]);
        for i in 0..32 {
            parts_lo.push(format!("{:02}: {:08b}", i, self.lo[i]));
            parts_hi.push(format!("{:02}: {:08b}", i, self.hi[i]));
        }
        f.debug_struct("Mask")
            .field("lo", &parts_lo)
            .field("hi", &parts_hi)
            .finish()
    }
}