Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
use std::io::{IoSlice, Read, Write, Result};
use crate::session::Session;

/// This type implements `io::Read` and `io::Write`, encapsulating
/// a Session `S` and an underlying transport `T`, such as a socket.
///
/// This allows you to use a rustls Session like a normal stream.
pub struct Stream<'a, S: 'a + Session + ?Sized, T: 'a + Read + Write + ?Sized> {
    /// Our session
    pub sess: &'a mut S,

    /// The underlying transport, like a socket
    pub sock: &'a mut T,
}

impl<'a, S, T> Stream<'a, S, T> where S: 'a + Session, T: 'a + Read + Write {
    /// Make a new Stream using the Session `sess` and socket-like object
    /// `sock`.  This does not fail and does no IO.
    pub fn new(sess: &'a mut S, sock: &'a mut T) -> Stream<'a, S, T> {
        Stream { sess, sock }
    }

    /// If we're handshaking, complete all the IO for that.
    /// If we have data to write, write it all.
    fn complete_prior_io(&mut self) -> Result<()> {
        if self.sess.is_handshaking() {
            self.sess.complete_io(self.sock)?;
        }

        if self.sess.wants_write() {
            self.sess.complete_io(self.sock)?;
        }

        Ok(())
    }
}

impl<'a, S, T> Read for Stream<'a, S, T> where S: 'a + Session, T: 'a + Read + Write {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.complete_prior_io()?;

        // We call complete_io() in a loop since a single call may read only
        // a partial packet from the underlying transport. A full packet is
        // needed to get more plaintext, which we must do if EOF has not been
        // hit. Otherwise, we will prematurely signal EOF by returning 0. We
        // determine if EOF has actually been hit by checking if 0 bytes were
        // read from the underlying transport.
        while
            self.sess.wants_read() &&
            self.sess.complete_io(self.sock)?.0 != 0
        { }

        self.sess.read(buf)
    }
}

impl<'a, S, T> Write for Stream<'a, S, T> where S: 'a + Session, T: 'a + Read + Write {
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self.sess.write(buf)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.sess.complete_io(self.sock);

        Ok(len)
    }

    fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize> {
        self.complete_prior_io()?;

        let len = self.sess.write_vectored(bufs)?;

        // Try to write the underlying transport here, but don't let
        // any errors mask the fact we've consumed `len` bytes.
        // Callers will learn of permanent errors on the next call.
        let _ = self.sess.complete_io(self.sock);

        Ok(len)
    }

    fn flush(&mut self) -> Result<()> {
        self.complete_prior_io()?;

        self.sess.flush()?;
        if self.sess.wants_write() {
            self.sess.complete_io(self.sock)?;
        }
        Ok(())
    }
}

/// This type implements `io::Read` and `io::Write`, encapsulating
/// and owning a Session `S` and an underlying blocking transport
/// `T`, such as a socket.
///
/// This allows you to use a rustls Session like a normal stream.
pub struct StreamOwned<S: Session + Sized, T: Read + Write + Sized> {
    /// Our session
    pub sess: S,

    /// The underlying transport, like a socket
    pub sock: T,
}

impl<S, T> StreamOwned<S, T> where S: Session, T: Read + Write {
    /// Make a new StreamOwned taking the Session `sess` and socket-like
    /// object `sock`.  This does not fail and does no IO.
    ///
    /// This is the same as `Stream::new` except `sess` and `sock` are
    /// moved into the StreamOwned.
    pub fn new(sess: S, sock: T) -> StreamOwned<S, T> {
        StreamOwned { sess, sock }
    }

    /// Get a reference to the underlying socket
    pub fn get_ref(&self) -> &T {
        &self.sock
    }

    /// Get a mutable reference to the underlying socket
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.sock
    }
}

impl<'a, S, T> StreamOwned<S, T> where S: Session, T: Read + Write {
    fn as_stream(&'a mut self) -> Stream<'a, S, T> {
        Stream { sess: &mut self.sess, sock: &mut self.sock }
    }
}

impl<S, T> Read for StreamOwned<S, T> where S: Session, T: Read + Write {
    fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
        self.as_stream().read(buf)
    }
}

impl<S, T> Write for StreamOwned<S, T> where S: Session, T: Read + Write {
    fn write(&mut self, buf: &[u8]) -> Result<usize> {
        self.as_stream().write(buf)
    }

    fn flush(&mut self) -> Result<()> {
        self.as_stream().flush()
    }
}

#[cfg(test)]
mod tests {
    use super::{Stream, StreamOwned};
    use crate::session::Session;
    use crate::client::ClientSession;
    use crate::server::ServerSession;
    use std::net::TcpStream;

    #[test]
    fn stream_can_be_created_for_session_and_tcpstream() {
        type _Test<'a> = Stream<'a, dyn Session, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_client_and_tcpstream() {
        type _Test = StreamOwned<ClientSession, TcpStream>;
    }

    #[test]
    fn streamowned_can_be_created_for_server_and_tcpstream() {
        type _Test = StreamOwned<ServerSession, TcpStream>;
    }
}