Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//! Thread pool for blocking operations

use crate::loom::sync::{Arc, Condvar, Mutex};
use crate::loom::thread;
use crate::runtime::blocking::schedule::NoopSchedule;
use crate::runtime::blocking::shutdown;
use crate::runtime::blocking::task::BlockingTask;
use crate::runtime::builder::ThreadNameFn;
use crate::runtime::context;
use crate::runtime::task::{self, JoinHandle};
use crate::runtime::{Builder, Callback, Handle};

use std::collections::{HashMap, VecDeque};
use std::fmt;
use std::time::Duration;

pub(crate) struct BlockingPool {
    spawner: Spawner,
    shutdown_rx: shutdown::Receiver,
}

#[derive(Clone)]
pub(crate) struct Spawner {
    inner: Arc<Inner>,
}

struct Inner {
    /// State shared between worker threads
    shared: Mutex<Shared>,

    /// Pool threads wait on this.
    condvar: Condvar,

    /// Spawned threads use this name
    thread_name: ThreadNameFn,

    /// Spawned thread stack size
    stack_size: Option<usize>,

    /// Call after a thread starts
    after_start: Option<Callback>,

    /// Call before a thread stops
    before_stop: Option<Callback>,

    // Maximum number of threads
    thread_cap: usize,

    // Customizable wait timeout
    keep_alive: Duration,
}

struct Shared {
    queue: VecDeque<Task>,
    num_th: usize,
    num_idle: u32,
    num_notify: u32,
    shutdown: bool,
    shutdown_tx: Option<shutdown::Sender>,
    /// Prior to shutdown, we clean up JoinHandles by having each timed-out
    /// thread join on the previous timed-out thread. This is not strictly
    /// necessary but helps avoid Valgrind false positives, see
    /// https://github.com/tokio-rs/tokio/commit/646fbae76535e397ef79dbcaacb945d4c829f666
    /// for more information.
    last_exiting_thread: Option<thread::JoinHandle<()>>,
    /// This holds the JoinHandles for all running threads; on shutdown, the thread
    /// calling shutdown handles joining on these.
    worker_threads: HashMap<usize, thread::JoinHandle<()>>,
    /// This is a counter used to iterate worker_threads in a consistent order (for loom's
    /// benefit)
    worker_thread_index: usize,
}

type Task = task::Notified<NoopSchedule>;

const KEEP_ALIVE: Duration = Duration::from_secs(10);

/// Run the provided function on an executor dedicated to blocking operations.
pub(crate) fn spawn_blocking<F, R>(func: F) -> JoinHandle<R>
where
    F: FnOnce() -> R + Send + 'static,
    R: Send + 'static,
{
    let rt = context::current().expect("not currently running on a Tokio 0.3.x runtime.");
    rt.spawn_blocking(func)
}

#[allow(dead_code)]
pub(crate) fn try_spawn_blocking<F, R>(func: F) -> Result<(), ()>
where
    F: FnOnce() -> R + Send + 'static,
    R: Send + 'static,
{
    let rt = context::current().expect("not currently running on a Tokio 0.3.x runtime.");

    let (task, _handle) = task::joinable(BlockingTask::new(func));
    rt.blocking_spawner.spawn(task, &rt)
}

// ===== impl BlockingPool =====

impl BlockingPool {
    pub(crate) fn new(builder: &Builder, thread_cap: usize) -> BlockingPool {
        let (shutdown_tx, shutdown_rx) = shutdown::channel();
        let keep_alive = builder.keep_alive.unwrap_or(KEEP_ALIVE);

        BlockingPool {
            spawner: Spawner {
                inner: Arc::new(Inner {
                    shared: Mutex::new(Shared {
                        queue: VecDeque::new(),
                        num_th: 0,
                        num_idle: 0,
                        num_notify: 0,
                        shutdown: false,
                        shutdown_tx: Some(shutdown_tx),
                        last_exiting_thread: None,
                        worker_threads: HashMap::new(),
                        worker_thread_index: 0,
                    }),
                    condvar: Condvar::new(),
                    thread_name: builder.thread_name.clone(),
                    stack_size: builder.thread_stack_size,
                    after_start: builder.after_start.clone(),
                    before_stop: builder.before_stop.clone(),
                    thread_cap,
                    keep_alive,
                }),
            },
            shutdown_rx,
        }
    }

    pub(crate) fn spawner(&self) -> &Spawner {
        &self.spawner
    }

    pub(crate) fn shutdown(&mut self, timeout: Option<Duration>) {
        let mut shared = self.spawner.inner.shared.lock();

        // The function can be called multiple times. First, by explicitly
        // calling `shutdown` then by the drop handler calling `shutdown`. This
        // prevents shutting down twice.
        if shared.shutdown {
            return;
        }

        shared.shutdown = true;
        shared.shutdown_tx = None;
        self.spawner.inner.condvar.notify_all();

        let last_exited_thread = std::mem::take(&mut shared.last_exiting_thread);
        let workers = std::mem::replace(&mut shared.worker_threads, HashMap::new());

        drop(shared);

        if self.shutdown_rx.wait(timeout) {
            let _ = last_exited_thread.map(|th| th.join());

            // Loom requires that execution be deterministic, so sort by thread ID before joining.
            // (HashMaps use a randomly-seeded hash function, so the order is nondeterministic)
            let mut workers: Vec<(usize, thread::JoinHandle<()>)> = workers.into_iter().collect();
            workers.sort_by_key(|(id, _)| *id);

            for (_id, handle) in workers.into_iter() {
                let _ = handle.join();
            }
        }
    }
}

impl Drop for BlockingPool {
    fn drop(&mut self) {
        self.shutdown(None);
    }
}

impl fmt::Debug for BlockingPool {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("BlockingPool").finish()
    }
}

// ===== impl Spawner =====

impl Spawner {
    pub(crate) fn spawn(&self, task: Task, rt: &Handle) -> Result<(), ()> {
        let shutdown_tx = {
            let mut shared = self.inner.shared.lock();

            if shared.shutdown {
                // Shutdown the task
                task.shutdown();

                // no need to even push this task; it would never get picked up
                return Err(());
            }

            shared.queue.push_back(task);

            if shared.num_idle == 0 {
                // No threads are able to process the task.

                if shared.num_th == self.inner.thread_cap {
                    // At max number of threads
                    None
                } else {
                    shared.num_th += 1;
                    assert!(shared.shutdown_tx.is_some());
                    shared.shutdown_tx.clone()
                }
            } else {
                // Notify an idle worker thread. The notification counter
                // is used to count the needed amount of notifications
                // exactly. Thread libraries may generate spurious
                // wakeups, this counter is used to keep us in a
                // consistent state.
                shared.num_idle -= 1;
                shared.num_notify += 1;
                self.inner.condvar.notify_one();
                None
            }
        };

        if let Some(shutdown_tx) = shutdown_tx {
            let mut shared = self.inner.shared.lock();

            let id = shared.worker_thread_index;
            shared.worker_thread_index += 1;

            let handle = self.spawn_thread(shutdown_tx, rt, id);

            shared.worker_threads.insert(id, handle);
        }

        Ok(())
    }

    fn spawn_thread(
        &self,
        shutdown_tx: shutdown::Sender,
        rt: &Handle,
        id: usize,
    ) -> thread::JoinHandle<()> {
        let mut builder = thread::Builder::new().name((self.inner.thread_name)());

        if let Some(stack_size) = self.inner.stack_size {
            builder = builder.stack_size(stack_size);
        }

        let rt = rt.clone();

        builder
            .spawn(move || {
                // Only the reference should be moved into the closure
                let _enter = crate::runtime::context::enter(rt.clone());
                rt.blocking_spawner.inner.run(id);
                drop(shutdown_tx);
            })
            .unwrap()
    }
}

impl Inner {
    fn run(&self, worker_thread_id: usize) {
        if let Some(f) = &self.after_start {
            f()
        }

        let mut shared = self.shared.lock();
        let mut join_on_thread = None;

        'main: loop {
            // BUSY
            while let Some(task) = shared.queue.pop_front() {
                drop(shared);
                task.run();

                shared = self.shared.lock();
            }

            // IDLE
            shared.num_idle += 1;

            while !shared.shutdown {
                let lock_result = self.condvar.wait_timeout(shared, self.keep_alive).unwrap();

                shared = lock_result.0;
                let timeout_result = lock_result.1;

                if shared.num_notify != 0 {
                    // We have received a legitimate wakeup,
                    // acknowledge it by decrementing the counter
                    // and transition to the BUSY state.
                    shared.num_notify -= 1;
                    break;
                }

                // Even if the condvar "timed out", if the pool is entering the
                // shutdown phase, we want to perform the cleanup logic.
                if !shared.shutdown && timeout_result.timed_out() {
                    // We'll join the prior timed-out thread's JoinHandle after dropping the lock.
                    // This isn't done when shutting down, because the thread calling shutdown will
                    // handle joining everything.
                    let my_handle = shared.worker_threads.remove(&worker_thread_id);
                    join_on_thread = std::mem::replace(&mut shared.last_exiting_thread, my_handle);

                    break 'main;
                }

                // Spurious wakeup detected, go back to sleep.
            }

            if shared.shutdown {
                // Drain the queue
                while let Some(task) = shared.queue.pop_front() {
                    drop(shared);
                    task.shutdown();

                    shared = self.shared.lock();
                }

                // Work was produced, and we "took" it (by decrementing num_notify).
                // This means that num_idle was decremented once for our wakeup.
                // But, since we are exiting, we need to "undo" that, as we'll stay idle.
                shared.num_idle += 1;
                // NOTE: Technically we should also do num_notify++ and notify again,
                // but since we're shutting down anyway, that won't be necessary.
                break;
            }
        }

        // Thread exit
        shared.num_th -= 1;

        // num_idle should now be tracked exactly, panic
        // with a descriptive message if it is not the
        // case.
        shared.num_idle = shared
            .num_idle
            .checked_sub(1)
            .expect("num_idle underflowed on thread exit");

        if shared.shutdown && shared.num_th == 0 {
            self.condvar.notify_one();
        }

        drop(shared);

        if let Some(f) = &self.before_stop {
            f()
        }

        if let Some(handle) = join_on_thread {
            let _ = handle.join();
        }
    }
}

impl fmt::Debug for Spawner {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("blocking::Spawner").finish()
    }
}