Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
//! Core task module.
//!
//! # Safety
//!
//! The functions in this module are private to the `task` module. All of them
//! should be considered `unsafe` to use, but are not marked as such since it
//! would be too noisy.
//!
//! Make sure to consult the relevant safety section of each function before
//! use.

use crate::loom::cell::UnsafeCell;
use crate::runtime::task::raw::{self, Vtable};
use crate::runtime::task::state::State;
use crate::runtime::task::waker::waker_ref;
use crate::runtime::task::{Notified, Schedule, Task};
use crate::util::linked_list;

use std::future::Future;
use std::pin::Pin;
use std::ptr::NonNull;
use std::task::{Context, Poll, Waker};

/// The task cell. Contains the components of the task.
///
/// It is critical for `Header` to be the first field as the task structure will
/// be referenced by both *mut Cell and *mut Header.
#[repr(C)]
pub(super) struct Cell<T: Future, S> {
    /// Hot task state data
    pub(super) header: Header,

    /// Either the future or output, depending on the execution stage.
    pub(super) core: Core<T, S>,

    /// Cold data
    pub(super) trailer: Trailer,
}

/// The core of the task.
///
/// Holds the future or output, depending on the stage of execution.
pub(super) struct Core<T: Future, S> {
    /// Scheduler used to drive this future
    pub(super) scheduler: UnsafeCell<Option<S>>,

    /// Either the future or the output
    pub(super) stage: UnsafeCell<Stage<T>>,
}

/// Crate public as this is also needed by the pool.
#[repr(C)]
pub(crate) struct Header {
    /// Task state
    pub(super) state: State,

    pub(crate) owned: UnsafeCell<linked_list::Pointers<Header>>,

    /// Pointer to next task, used with the injection queue
    pub(crate) queue_next: UnsafeCell<Option<NonNull<Header>>>,

    /// Pointer to the next task in the transfer stack
    pub(super) stack_next: UnsafeCell<Option<NonNull<Header>>>,

    /// Table of function pointers for executing actions on the task.
    pub(super) vtable: &'static Vtable,
}

unsafe impl Send for Header {}
unsafe impl Sync for Header {}

/// Cold data is stored after the future.
pub(super) struct Trailer {
    /// Consumer task waiting on completion of this task.
    pub(super) waker: UnsafeCell<Option<Waker>>,
}

/// Either the future or the output.
pub(super) enum Stage<T: Future> {
    Running(T),
    Finished(super::Result<T::Output>),
    Consumed,
}

impl<T: Future, S: Schedule> Cell<T, S> {
    /// Allocates a new task cell, containing the header, trailer, and core
    /// structures.
    pub(super) fn new(future: T, state: State) -> Box<Cell<T, S>> {
        Box::new(Cell {
            header: Header {
                state,
                owned: UnsafeCell::new(linked_list::Pointers::new()),
                queue_next: UnsafeCell::new(None),
                stack_next: UnsafeCell::new(None),
                vtable: raw::vtable::<T, S>(),
            },
            core: Core {
                scheduler: UnsafeCell::new(None),
                stage: UnsafeCell::new(Stage::Running(future)),
            },
            trailer: Trailer {
                waker: UnsafeCell::new(None),
            },
        })
    }
}

impl<T: Future, S: Schedule> Core<T, S> {
    /// Bind a scheduler to the task.
    ///
    /// This only happens on the first poll and must be preceeded by a call to
    /// `is_bound` to determine if binding is appropriate or not.
    ///
    /// # Safety
    ///
    /// Binding must not be done concurrently since it will mutate the task
    /// core through a shared reference.
    pub(super) fn bind_scheduler(&self, task: Task<S>) {
        // This function may be called concurrently, but the __first__ time it
        // is called, the caller has unique access to this field. All subsequent
        // concurrent calls will be via the `Waker`, which will "happens after"
        // the first poll.
        //
        // In other words, it is always safe to read the field and it is safe to
        // write to the field when it is `None`.
        debug_assert!(!self.is_bound());

        // Bind the task to the scheduler
        let scheduler = S::bind(task);

        // Safety: As `scheduler` is not set, this is the first poll
        self.scheduler.with_mut(|ptr| unsafe {
            *ptr = Some(scheduler);
        });
    }

    /// Returns true if the task is bound to a scheduler.
    pub(super) fn is_bound(&self) -> bool {
        // Safety: never called concurrently w/ a mutation.
        self.scheduler.with(|ptr| unsafe { (*ptr).is_some() })
    }

    /// Poll the future
    ///
    /// # Safety
    ///
    /// The caller must ensure it is safe to mutate the `state` field. This
    /// requires ensuring mutal exclusion between any concurrent thread that
    /// might modify the future or output field.
    ///
    /// The mutual exclusion is implemented by `Harness` and the `Lifecycle`
    /// component of the task state.
    ///
    /// `self` must also be pinned. This is handled by storing the task on the
    /// heap.
    pub(super) fn poll(&self, header: &Header) -> Poll<T::Output> {
        let res = {
            self.stage.with_mut(|ptr| {
                // Safety: The caller ensures mutual exclusion to the field.
                let future = match unsafe { &mut *ptr } {
                    Stage::Running(future) => future,
                    _ => unreachable!("unexpected stage"),
                };

                // Safety: The caller ensures the future is pinned.
                let future = unsafe { Pin::new_unchecked(future) };

                // The waker passed into the `poll` function does not require a ref
                // count increment.
                let waker_ref = waker_ref::<T, S>(header);
                let mut cx = Context::from_waker(&*waker_ref);

                future.poll(&mut cx)
            })
        };

        if res.is_ready() {
            self.drop_future_or_output();
        }

        res
    }

    /// Drop the future
    ///
    /// # Safety
    ///
    /// The caller must ensure it is safe to mutate the `stage` field.
    pub(super) fn drop_future_or_output(&self) {
        self.stage.with_mut(|ptr| {
            // Safety: The caller ensures mutal exclusion to the field.
            unsafe { *ptr = Stage::Consumed };
        });
    }

    /// Store the task output
    ///
    /// # Safety
    ///
    /// The caller must ensure it is safe to mutate the `stage` field.
    pub(super) fn store_output(&self, output: super::Result<T::Output>) {
        self.stage.with_mut(|ptr| {
            // Safety: the caller ensures mutual exclusion to the field.
            unsafe { *ptr = Stage::Finished(output) };
        });
    }

    /// Take the task output
    ///
    /// # Safety
    ///
    /// The caller must ensure it is safe to mutate the `stage` field.
    pub(super) fn take_output(&self) -> super::Result<T::Output> {
        use std::mem;

        self.stage.with_mut(|ptr| {
            // Safety:: the caller ensures mutal exclusion to the field.
            match mem::replace(unsafe { &mut *ptr }, Stage::Consumed) {
                Stage::Finished(output) => output,
                _ => panic!("unexpected task state"),
            }
        })
    }

    /// Schedule the future for execution
    pub(super) fn schedule(&self, task: Notified<S>) {
        self.scheduler.with(|ptr| {
            // Safety: Can only be called after initial `poll`, which is the
            // only time the field is mutated.
            match unsafe { &*ptr } {
                Some(scheduler) => scheduler.schedule(task),
                None => panic!("no scheduler set"),
            }
        });
    }

    /// Schedule the future for execution in the near future, yielding the
    /// thread to other tasks.
    pub(super) fn yield_now(&self, task: Notified<S>) {
        self.scheduler.with(|ptr| {
            // Safety: Can only be called after initial `poll`, which is the
            // only time the field is mutated.
            match unsafe { &*ptr } {
                Some(scheduler) => scheduler.yield_now(task),
                None => panic!("no scheduler set"),
            }
        });
    }

    /// Release the task
    ///
    /// If the `Scheduler` implementation is able to, it returns the `Task`
    /// handle immediately. The caller of this function will batch a ref-dec
    /// with a state change.
    pub(super) fn release(&self, task: Task<S>) -> Option<Task<S>> {
        use std::mem::ManuallyDrop;

        let task = ManuallyDrop::new(task);

        self.scheduler.with(|ptr| {
            // Safety: Can only be called after initial `poll`, which is the
            // only time the field is mutated.
            match unsafe { &*ptr } {
                Some(scheduler) => scheduler.release(&*task),
                // Task was never polled
                None => None,
            }
        })
    }
}

cfg_rt_multi_thread! {
    impl Header {
        pub(crate) fn shutdown(&self) {
            use crate::runtime::task::RawTask;

            let task = unsafe { RawTask::from_raw(self.into()) };
            task.shutdown();
        }
    }
}

#[test]
#[cfg(not(loom))]
fn header_lte_cache_line() {
    use std::mem::size_of;

    assert!(size_of::<Header>() <= 8 * size_of::<*const ()>());
}