1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
use std::error;
use std::fmt;
use std::result;

use hir;

/// A type alias for errors specific to Unicode handling of classes.
pub type Result<T> = result::Result<T, Error>;

/// An inclusive range of codepoints from a generated file (hence the static
/// lifetime).
type Range = &'static [(char, char)];

/// An error that occurs when dealing with Unicode.
///
/// We don't impl the Error trait here because these always get converted
/// into other public errors. (This error type isn't exported.)
#[derive(Debug)]
pub enum Error {
    PropertyNotFound,
    PropertyValueNotFound,
    // Not used when unicode-perl is enabled.
    #[allow(dead_code)]
    PerlClassNotFound,
}

/// A type alias for errors specific to Unicode case folding.
pub type FoldResult<T> = result::Result<T, CaseFoldError>;

/// An error that occurs when Unicode-aware simple case folding fails.
///
/// This error can occur when the case mapping tables necessary for Unicode
/// aware case folding are unavailable. This only occurs when the
/// `unicode-case` feature is disabled. (The feature is enabled by default.)
#[derive(Debug)]
pub struct CaseFoldError(());

impl error::Error for CaseFoldError {}

impl fmt::Display for CaseFoldError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Unicode-aware case folding is not available \
             (probably because the unicode-case feature is not enabled)"
        )
    }
}

/// An error that occurs when the Unicode-aware `\w` class is unavailable.
///
/// This error can occur when the data tables necessary for the Unicode aware
/// Perl character class `\w` are unavailable. This only occurs when the
/// `unicode-perl` feature is disabled. (The feature is enabled by default.)
#[derive(Debug)]
pub struct UnicodeWordError(());

impl error::Error for UnicodeWordError {}

impl fmt::Display for UnicodeWordError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "Unicode-aware \\w class is not available \
             (probably because the unicode-perl feature is not enabled)"
        )
    }
}

/// Return an iterator over the equivalence class of simple case mappings
/// for the given codepoint. The equivalence class does not include the
/// given codepoint.
///
/// If the equivalence class is empty, then this returns the next scalar
/// value that has a non-empty equivalence class, if it exists. If no such
/// scalar value exists, then `None` is returned. The point of this behavior
/// is to permit callers to avoid calling `simple_fold` more than they need
/// to, since there is some cost to fetching the equivalence class.
///
/// This returns an error if the Unicode case folding tables are not available.
pub fn simple_fold(
    c: char,
) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>> {
    #[cfg(not(feature = "unicode-case"))]
    fn imp(
        _: char,
    ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
    {
        use std::option::IntoIter;
        Err::<result::Result<IntoIter<char>, _>, _>(CaseFoldError(()))
    }

    #[cfg(feature = "unicode-case")]
    fn imp(
        c: char,
    ) -> FoldResult<result::Result<impl Iterator<Item = char>, Option<char>>>
    {
        use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;

        Ok(CASE_FOLDING_SIMPLE
            .binary_search_by_key(&c, |&(c1, _)| c1)
            .map(|i| CASE_FOLDING_SIMPLE[i].1.iter().map(|&c| c))
            .map_err(|i| {
                if i >= CASE_FOLDING_SIMPLE.len() {
                    None
                } else {
                    Some(CASE_FOLDING_SIMPLE[i].0)
                }
            }))
    }

    imp(c)
}

/// Returns true if and only if the given (inclusive) range contains at least
/// one Unicode scalar value that has a non-empty non-trivial simple case
/// mapping.
///
/// This function panics if `end < start`.
///
/// This returns an error if the Unicode case folding tables are not available.
pub fn contains_simple_case_mapping(
    start: char,
    end: char,
) -> FoldResult<bool> {
    #[cfg(not(feature = "unicode-case"))]
    fn imp(_: char, _: char) -> FoldResult<bool> {
        Err(CaseFoldError(()))
    }

    #[cfg(feature = "unicode-case")]
    fn imp(start: char, end: char) -> FoldResult<bool> {
        use std::cmp::Ordering;
        use unicode_tables::case_folding_simple::CASE_FOLDING_SIMPLE;

        assert!(start <= end);
        Ok(CASE_FOLDING_SIMPLE
            .binary_search_by(|&(c, _)| {
                if start <= c && c <= end {
                    Ordering::Equal
                } else if c > end {
                    Ordering::Greater
                } else {
                    Ordering::Less
                }
            })
            .is_ok())
    }

    imp(start, end)
}

/// A query for finding a character class defined by Unicode. This supports
/// either use of a property name directly, or lookup by property value. The
/// former generally refers to Binary properties (see UTS#44, Table 8), but
/// as a special exception (see UTS#18, Section 1.2) both general categories
/// (an enumeration) and scripts (a catalog) are supported as if each of their
/// possible values were a binary property.
///
/// In all circumstances, property names and values are normalized and
/// canonicalized. That is, `GC == gc == GeneralCategory == general_category`.
///
/// The lifetime `'a` refers to the shorter of the lifetimes of property name
/// and property value.
#[derive(Debug)]
pub enum ClassQuery<'a> {
    /// Return a class corresponding to a Unicode binary property, named by
    /// a single letter.
    OneLetter(char),
    /// Return a class corresponding to a Unicode binary property.
    ///
    /// Note that, by special exception (see UTS#18, Section 1.2), both
    /// general category values and script values are permitted here as if
    /// they were a binary property.
    Binary(&'a str),
    /// Return a class corresponding to all codepoints whose property
    /// (identified by `property_name`) corresponds to the given value
    /// (identified by `property_value`).
    ByValue {
        /// A property name.
        property_name: &'a str,
        /// A property value.
        property_value: &'a str,
    },
}

impl<'a> ClassQuery<'a> {
    fn canonicalize(&self) -> Result<CanonicalClassQuery> {
        match *self {
            ClassQuery::OneLetter(c) => self.canonical_binary(&c.to_string()),
            ClassQuery::Binary(name) => self.canonical_binary(name),
            ClassQuery::ByValue { property_name, property_value } => {
                let property_name = symbolic_name_normalize(property_name);
                let property_value = symbolic_name_normalize(property_value);

                let canon_name = match canonical_prop(&property_name)? {
                    None => return Err(Error::PropertyNotFound),
                    Some(canon_name) => canon_name,
                };
                Ok(match canon_name {
                    "General_Category" => {
                        let canon = match canonical_gencat(&property_value)? {
                            None => return Err(Error::PropertyValueNotFound),
                            Some(canon) => canon,
                        };
                        CanonicalClassQuery::GeneralCategory(canon)
                    }
                    "Script" => {
                        let canon = match canonical_script(&property_value)? {
                            None => return Err(Error::PropertyValueNotFound),
                            Some(canon) => canon,
                        };
                        CanonicalClassQuery::Script(canon)
                    }
                    _ => {
                        let vals = match property_values(canon_name)? {
                            None => return Err(Error::PropertyValueNotFound),
                            Some(vals) => vals,
                        };
                        let canon_val =
                            match canonical_value(vals, &property_value) {
                                None => {
                                    return Err(Error::PropertyValueNotFound)
                                }
                                Some(canon_val) => canon_val,
                            };
                        CanonicalClassQuery::ByValue {
                            property_name: canon_name,
                            property_value: canon_val,
                        }
                    }
                })
            }
        }
    }

    fn canonical_binary(&self, name: &str) -> Result<CanonicalClassQuery> {
        let norm = symbolic_name_normalize(name);

        // This is a special case where 'cf' refers to the 'Format' general
        // category, but where the 'cf' abbreviation is also an abbreviation
        // for the 'Case_Folding' property. But we want to treat it as
        // a general category. (Currently, we don't even support the
        // 'Case_Folding' property. But if we do in the future, users will be
        // required to spell it out.)
        if norm != "cf" {
            if let Some(canon) = canonical_prop(&norm)? {
                return Ok(CanonicalClassQuery::Binary(canon));
            }
        }
        if let Some(canon) = canonical_gencat(&norm)? {
            return Ok(CanonicalClassQuery::GeneralCategory(canon));
        }
        if let Some(canon) = canonical_script(&norm)? {
            return Ok(CanonicalClassQuery::Script(canon));
        }
        Err(Error::PropertyNotFound)
    }
}

/// Like ClassQuery, but its parameters have been canonicalized. This also
/// differentiates binary properties from flattened general categories and
/// scripts.
#[derive(Debug, Eq, PartialEq)]
enum CanonicalClassQuery {
    /// The canonical binary property name.
    Binary(&'static str),
    /// The canonical general category name.
    GeneralCategory(&'static str),
    /// The canonical script name.
    Script(&'static str),
    /// An arbitrary association between property and value, both of which
    /// have been canonicalized.
    ///
    /// Note that by construction, the property name of ByValue will never
    /// be General_Category or Script. Those two cases are subsumed by the
    /// eponymous variants.
    ByValue {
        /// The canonical property name.
        property_name: &'static str,
        /// The canonical property value.
        property_value: &'static str,
    },
}

/// Looks up a Unicode class given a query. If one doesn't exist, then
/// `None` is returned.
pub fn class(query: ClassQuery) -> Result<hir::ClassUnicode> {
    use self::CanonicalClassQuery::*;

    match query.canonicalize()? {
        Binary(name) => bool_property(name),
        GeneralCategory(name) => gencat(name),
        Script(name) => script(name),
        ByValue { property_name: "Age", property_value } => {
            let mut class = hir::ClassUnicode::empty();
            for set in ages(property_value)? {
                class.union(&hir_class(set));
            }
            Ok(class)
        }
        ByValue { property_name: "Script_Extensions", property_value } => {
            script_extension(property_value)
        }
        ByValue {
            property_name: "Grapheme_Cluster_Break",
            property_value,
        } => gcb(property_value),
        ByValue { property_name: "Sentence_Break", property_value } => {
            sb(property_value)
        }
        ByValue { property_name: "Word_Break", property_value } => {
            wb(property_value)
        }
        _ => {
            // What else should we support?
            Err(Error::PropertyNotFound)
        }
    }
}

/// Returns a Unicode aware class for \w.
///
/// This returns an error if the data is not available for \w.
pub fn perl_word() -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-perl"))]
    fn imp() -> Result<hir::ClassUnicode> {
        Err(Error::PerlClassNotFound)
    }

    #[cfg(feature = "unicode-perl")]
    fn imp() -> Result<hir::ClassUnicode> {
        use unicode_tables::perl_word::PERL_WORD;
        Ok(hir_class(PERL_WORD))
    }

    imp()
}

/// Returns a Unicode aware class for \s.
///
/// This returns an error if the data is not available for \s.
pub fn perl_space() -> Result<hir::ClassUnicode> {
    #[cfg(not(any(feature = "unicode-perl", feature = "unicode-bool")))]
    fn imp() -> Result<hir::ClassUnicode> {
        Err(Error::PerlClassNotFound)
    }

    #[cfg(all(feature = "unicode-perl", not(feature = "unicode-bool")))]
    fn imp() -> Result<hir::ClassUnicode> {
        use unicode_tables::perl_space::WHITE_SPACE;
        Ok(hir_class(WHITE_SPACE))
    }

    #[cfg(feature = "unicode-bool")]
    fn imp() -> Result<hir::ClassUnicode> {
        use unicode_tables::property_bool::WHITE_SPACE;
        Ok(hir_class(WHITE_SPACE))
    }

    imp()
}

/// Returns a Unicode aware class for \d.
///
/// This returns an error if the data is not available for \d.
pub fn perl_digit() -> Result<hir::ClassUnicode> {
    #[cfg(not(any(feature = "unicode-perl", feature = "unicode-gencat")))]
    fn imp() -> Result<hir::ClassUnicode> {
        Err(Error::PerlClassNotFound)
    }

    #[cfg(all(feature = "unicode-perl", not(feature = "unicode-gencat")))]
    fn imp() -> Result<hir::ClassUnicode> {
        use unicode_tables::perl_decimal::DECIMAL_NUMBER;
        Ok(hir_class(DECIMAL_NUMBER))
    }

    #[cfg(feature = "unicode-gencat")]
    fn imp() -> Result<hir::ClassUnicode> {
        use unicode_tables::general_category::DECIMAL_NUMBER;
        Ok(hir_class(DECIMAL_NUMBER))
    }

    imp()
}

/// Build a Unicode HIR class from a sequence of Unicode scalar value ranges.
pub fn hir_class(ranges: &[(char, char)]) -> hir::ClassUnicode {
    let hir_ranges: Vec<hir::ClassUnicodeRange> = ranges
        .iter()
        .map(|&(s, e)| hir::ClassUnicodeRange::new(s, e))
        .collect();
    hir::ClassUnicode::new(hir_ranges)
}

/// Returns true only if the given codepoint is in the `\w` character class.
///
/// If the `unicode-perl` feature is not enabled, then this returns an error.
pub fn is_word_character(c: char) -> result::Result<bool, UnicodeWordError> {
    #[cfg(not(feature = "unicode-perl"))]
    fn imp(_: char) -> result::Result<bool, UnicodeWordError> {
        Err(UnicodeWordError(()))
    }

    #[cfg(feature = "unicode-perl")]
    fn imp(c: char) -> result::Result<bool, UnicodeWordError> {
        use is_word_byte;
        use std::cmp::Ordering;
        use unicode_tables::perl_word::PERL_WORD;

        if c <= 0x7F as char && is_word_byte(c as u8) {
            return Ok(true);
        }
        Ok(PERL_WORD
            .binary_search_by(|&(start, end)| {
                if start <= c && c <= end {
                    Ordering::Equal
                } else if start > c {
                    Ordering::Greater
                } else {
                    Ordering::Less
                }
            })
            .is_ok())
    }

    imp(c)
}

/// A mapping of property values for a specific property.
///
/// The first element of each tuple is a normalized property value while the
/// second element of each tuple is the corresponding canonical property
/// value.
type PropertyValues = &'static [(&'static str, &'static str)];

fn canonical_gencat(normalized_value: &str) -> Result<Option<&'static str>> {
    Ok(match normalized_value {
        "any" => Some("Any"),
        "assigned" => Some("Assigned"),
        "ascii" => Some("ASCII"),
        _ => {
            let gencats = property_values("General_Category")?.unwrap();
            canonical_value(gencats, normalized_value)
        }
    })
}

fn canonical_script(normalized_value: &str) -> Result<Option<&'static str>> {
    let scripts = property_values("Script")?.unwrap();
    Ok(canonical_value(scripts, normalized_value))
}

/// Find the canonical property name for the given normalized property name.
///
/// If no such property exists, then `None` is returned.
///
/// The normalized property name must have been normalized according to
/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
///
/// If the property names data is not available, then an error is returned.
fn canonical_prop(normalized_name: &str) -> Result<Option<&'static str>> {
    #[cfg(not(any(
        feature = "unicode-age",
        feature = "unicode-bool",
        feature = "unicode-gencat",
        feature = "unicode-perl",
        feature = "unicode-script",
        feature = "unicode-segment",
    )))]
    fn imp(_: &str) -> Result<Option<&'static str>> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(any(
        feature = "unicode-age",
        feature = "unicode-bool",
        feature = "unicode-gencat",
        feature = "unicode-perl",
        feature = "unicode-script",
        feature = "unicode-segment",
    ))]
    fn imp(name: &str) -> Result<Option<&'static str>> {
        use unicode_tables::property_names::PROPERTY_NAMES;

        Ok(PROPERTY_NAMES
            .binary_search_by_key(&name, |&(n, _)| n)
            .ok()
            .map(|i| PROPERTY_NAMES[i].1))
    }

    imp(normalized_name)
}

/// Find the canonical property value for the given normalized property
/// value.
///
/// The given property values should correspond to the values for the property
/// under question, which can be found using `property_values`.
///
/// If no such property value exists, then `None` is returned.
///
/// The normalized property value must have been normalized according to
/// UAX44 LM3, which can be done using `symbolic_name_normalize`.
fn canonical_value(
    vals: PropertyValues,
    normalized_value: &str,
) -> Option<&'static str> {
    vals.binary_search_by_key(&normalized_value, |&(n, _)| n)
        .ok()
        .map(|i| vals[i].1)
}

/// Return the table of property values for the given property name.
///
/// If the property values data is not available, then an error is returned.
fn property_values(
    canonical_property_name: &'static str,
) -> Result<Option<PropertyValues>> {
    #[cfg(not(any(
        feature = "unicode-age",
        feature = "unicode-bool",
        feature = "unicode-gencat",
        feature = "unicode-perl",
        feature = "unicode-script",
        feature = "unicode-segment",
    )))]
    fn imp(_: &'static str) -> Result<Option<PropertyValues>> {
        Err(Error::PropertyValueNotFound)
    }

    #[cfg(any(
        feature = "unicode-age",
        feature = "unicode-bool",
        feature = "unicode-gencat",
        feature = "unicode-perl",
        feature = "unicode-script",
        feature = "unicode-segment",
    ))]
    fn imp(name: &'static str) -> Result<Option<PropertyValues>> {
        use unicode_tables::property_values::PROPERTY_VALUES;

        Ok(PROPERTY_VALUES
            .binary_search_by_key(&name, |&(n, _)| n)
            .ok()
            .map(|i| PROPERTY_VALUES[i].1))
    }

    imp(canonical_property_name)
}

// This is only used in some cases, but small enough to just let it be dead
// instead of figuring out (and maintaining) the right set of features.
#[allow(dead_code)]
fn property_set(
    name_map: &'static [(&'static str, Range)],
    canonical: &'static str,
) -> Option<Range> {
    name_map
        .binary_search_by_key(&canonical, |x| x.0)
        .ok()
        .map(|i| name_map[i].1)
}

/// Returns an iterator over Unicode Age sets. Each item corresponds to a set
/// of codepoints that were added in a particular revision of Unicode. The
/// iterator yields items in chronological order.
///
/// If the given age value isn't valid or if the data isn't available, then an
/// error is returned instead.
fn ages(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
    #[cfg(not(feature = "unicode-age"))]
    fn imp(_: &str) -> Result<impl Iterator<Item = Range>> {
        use std::option::IntoIter;
        Err::<IntoIter<Range>, _>(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-age")]
    fn imp(canonical_age: &str) -> Result<impl Iterator<Item = Range>> {
        use unicode_tables::age;

        const AGES: &'static [(&'static str, Range)] = &[
            ("V1_1", age::V1_1),
            ("V2_0", age::V2_0),
            ("V2_1", age::V2_1),
            ("V3_0", age::V3_0),
            ("V3_1", age::V3_1),
            ("V3_2", age::V3_2),
            ("V4_0", age::V4_0),
            ("V4_1", age::V4_1),
            ("V5_0", age::V5_0),
            ("V5_1", age::V5_1),
            ("V5_2", age::V5_2),
            ("V6_0", age::V6_0),
            ("V6_1", age::V6_1),
            ("V6_2", age::V6_2),
            ("V6_3", age::V6_3),
            ("V7_0", age::V7_0),
            ("V8_0", age::V8_0),
            ("V9_0", age::V9_0),
            ("V10_0", age::V10_0),
            ("V11_0", age::V11_0),
            ("V12_0", age::V12_0),
            ("V12_1", age::V12_1),
            ("V13_0", age::V13_0),
        ];
        assert_eq!(AGES.len(), age::BY_NAME.len(), "ages are out of sync");

        let pos = AGES.iter().position(|&(age, _)| canonical_age == age);
        match pos {
            None => Err(Error::PropertyValueNotFound),
            Some(i) => Ok(AGES[..i + 1].iter().map(|&(_, classes)| classes)),
        }
    }

    imp(canonical_age)
}

/// Returns the Unicode HIR class corresponding to the given general category.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given general category could not be found, or if the general
/// category data is not available, then an error is returned.
fn gencat(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-gencat"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-gencat")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::general_category::BY_NAME;
        match name {
            "ASCII" => Ok(hir_class(&[('\0', '\x7F')])),
            "Any" => Ok(hir_class(&[('\0', '\u{10FFFF}')])),
            "Assigned" => {
                let mut cls = gencat("Unassigned")?;
                cls.negate();
                Ok(cls)
            }
            name => property_set(BY_NAME, name)
                .map(hir_class)
                .ok_or(Error::PropertyValueNotFound),
        }
    }

    match canonical_name {
        "Decimal_Number" => perl_digit(),
        name => imp(name),
    }
}

/// Returns the Unicode HIR class corresponding to the given script.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given script could not be found, or if the script data is not
/// available, then an error is returned.
fn script(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-script"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-script")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::script::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyValueNotFound)
    }

    imp(canonical_name)
}

/// Returns the Unicode HIR class corresponding to the given script extension.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given script extension could not be found, or if the script data is
/// not available, then an error is returned.
fn script_extension(
    canonical_name: &'static str,
) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-script"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-script")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::script_extension::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyValueNotFound)
    }

    imp(canonical_name)
}

/// Returns the Unicode HIR class corresponding to the given Unicode boolean
/// property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given boolean property could not be found, or if the boolean
/// property data is not available, then an error is returned.
fn bool_property(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-bool"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-bool")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::property_bool::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyNotFound)
    }

    match canonical_name {
        "Decimal_Number" => perl_digit(),
        "White_Space" => perl_space(),
        name => imp(name),
    }
}

/// Returns the Unicode HIR class corresponding to the given grapheme cluster
/// break property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn gcb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-segment"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-segment")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::grapheme_cluster_break::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyValueNotFound)
    }

    imp(canonical_name)
}

/// Returns the Unicode HIR class corresponding to the given word break
/// property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn wb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-segment"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-segment")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::word_break::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyValueNotFound)
    }

    imp(canonical_name)
}

/// Returns the Unicode HIR class corresponding to the given sentence
/// break property.
///
/// Name canonicalization is assumed to be performed by the caller.
///
/// If the given property could not be found, or if the corresponding data is
/// not available, then an error is returned.
fn sb(canonical_name: &'static str) -> Result<hir::ClassUnicode> {
    #[cfg(not(feature = "unicode-segment"))]
    fn imp(_: &'static str) -> Result<hir::ClassUnicode> {
        Err(Error::PropertyNotFound)
    }

    #[cfg(feature = "unicode-segment")]
    fn imp(name: &'static str) -> Result<hir::ClassUnicode> {
        use unicode_tables::sentence_break::BY_NAME;
        property_set(BY_NAME, name)
            .map(hir_class)
            .ok_or(Error::PropertyValueNotFound)
    }

    imp(canonical_name)
}

/// Like symbolic_name_normalize_bytes, but operates on a string.
fn symbolic_name_normalize(x: &str) -> String {
    let mut tmp = x.as_bytes().to_vec();
    let len = symbolic_name_normalize_bytes(&mut tmp).len();
    tmp.truncate(len);
    // This should always succeed because `symbolic_name_normalize_bytes`
    // guarantees that `&tmp[..len]` is always valid UTF-8.
    //
    // N.B. We could avoid the additional UTF-8 check here, but it's unlikely
    // to be worth skipping the additional safety check. A benchmark must
    // justify it first.
    String::from_utf8(tmp).unwrap()
}

/// Normalize the given symbolic name in place according to UAX44-LM3.
///
/// A "symbolic name" typically corresponds to property names and property
/// value aliases. Note, though, that it should not be applied to property
/// string values.
///
/// The slice returned is guaranteed to be valid UTF-8 for all possible values
/// of `slice`.
///
/// See: https://unicode.org/reports/tr44/#UAX44-LM3
fn symbolic_name_normalize_bytes(slice: &mut [u8]) -> &mut [u8] {
    // I couldn't find a place in the standard that specified that property
    // names/aliases had a particular structure (unlike character names), but
    // we assume that it's ASCII only and drop anything that isn't ASCII.
    let mut start = 0;
    let mut starts_with_is = false;
    if slice.len() >= 2 {
        // Ignore any "is" prefix.
        starts_with_is = slice[0..2] == b"is"[..]
            || slice[0..2] == b"IS"[..]
            || slice[0..2] == b"iS"[..]
            || slice[0..2] == b"Is"[..];
        if starts_with_is {
            start = 2;
        }
    }
    let mut next_write = 0;
    for i in start..slice.len() {
        // VALIDITY ARGUMENT: To guarantee that the resulting slice is valid
        // UTF-8, we ensure that the slice contains only ASCII bytes. In
        // particular, we drop every non-ASCII byte from the normalized string.
        let b = slice[i];
        if b == b' ' || b == b'_' || b == b'-' {
            continue;
        } else if b'A' <= b && b <= b'Z' {
            slice[next_write] = b + (b'a' - b'A');
            next_write += 1;
        } else if b <= 0x7F {
            slice[next_write] = b;
            next_write += 1;
        }
    }
    // Special case: ISO_Comment has a 'isc' abbreviation. Since we generally
    // ignore 'is' prefixes, the 'isc' abbreviation gets caught in the cross
    // fire and ends up creating an alias for 'c' to 'ISO_Comment', but it
    // is actually an alias for the 'Other' general category.
    if starts_with_is && next_write == 1 && slice[0] == b'c' {
        slice[0] = b'i';
        slice[1] = b's';
        slice[2] = b'c';
        next_write = 3;
    }
    &mut slice[..next_write]
}

#[cfg(test)]
mod tests {
    use super::{
        contains_simple_case_mapping, simple_fold, symbolic_name_normalize,
        symbolic_name_normalize_bytes,
    };

    #[cfg(feature = "unicode-case")]
    fn simple_fold_ok(c: char) -> impl Iterator<Item = char> {
        simple_fold(c).unwrap().unwrap()
    }

    #[cfg(feature = "unicode-case")]
    fn simple_fold_err(c: char) -> Option<char> {
        match simple_fold(c).unwrap() {
            Ok(_) => unreachable!("simple_fold returned Ok iterator"),
            Err(next) => next,
        }
    }

    #[cfg(feature = "unicode-case")]
    fn contains_case_map(start: char, end: char) -> bool {
        contains_simple_case_mapping(start, end).unwrap()
    }

    #[test]
    #[cfg(feature = "unicode-case")]
    fn simple_fold_k() {
        let xs: Vec<char> = simple_fold_ok('k').collect();
        assert_eq!(xs, vec!['K', 'K']);

        let xs: Vec<char> = simple_fold_ok('K').collect();
        assert_eq!(xs, vec!['k', 'K']);

        let xs: Vec<char> = simple_fold_ok('K').collect();
        assert_eq!(xs, vec!['K', 'k']);
    }

    #[test]
    #[cfg(feature = "unicode-case")]
    fn simple_fold_a() {
        let xs: Vec<char> = simple_fold_ok('a').collect();
        assert_eq!(xs, vec!['A']);

        let xs: Vec<char> = simple_fold_ok('A').collect();
        assert_eq!(xs, vec!['a']);
    }

    #[test]
    #[cfg(feature = "unicode-case")]
    fn simple_fold_empty() {
        assert_eq!(Some('A'), simple_fold_err('?'));
        assert_eq!(Some('A'), simple_fold_err('@'));
        assert_eq!(Some('a'), simple_fold_err('['));
        assert_eq!(Some('Ⰰ'), simple_fold_err('☃'));
    }

    #[test]
    #[cfg(feature = "unicode-case")]
    fn simple_fold_max() {
        assert_eq!(None, simple_fold_err('\u{10FFFE}'));
        assert_eq!(None, simple_fold_err('\u{10FFFF}'));
    }

    #[test]
    #[cfg(not(feature = "unicode-case"))]
    fn simple_fold_disabled() {
        assert!(simple_fold('a').is_err());
    }

    #[test]
    #[cfg(feature = "unicode-case")]
    fn range_contains() {
        assert!(contains_case_map('A', 'A'));
        assert!(contains_case_map('Z', 'Z'));
        assert!(contains_case_map('A', 'Z'));
        assert!(contains_case_map('@', 'A'));
        assert!(contains_case_map('Z', '['));
        assert!(contains_case_map('☃', 'Ⰰ'));

        assert!(!contains_case_map('[', '['));
        assert!(!contains_case_map('[', '`'));

        assert!(!contains_case_map('☃', '☃'));
    }

    #[test]
    #[cfg(not(feature = "unicode-case"))]
    fn range_contains_disabled() {
        assert!(contains_simple_case_mapping('a', 'a').is_err());
    }

    #[test]
    #[cfg(feature = "unicode-gencat")]
    fn regression_466() {
        use super::{CanonicalClassQuery, ClassQuery};

        let q = ClassQuery::OneLetter('C');
        assert_eq!(
            q.canonicalize().unwrap(),
            CanonicalClassQuery::GeneralCategory("Other")
        );
    }

    #[test]
    fn sym_normalize() {
        let sym_norm = symbolic_name_normalize;

        assert_eq!(sym_norm("Line_Break"), "linebreak");
        assert_eq!(sym_norm("Line-break"), "linebreak");
        assert_eq!(sym_norm("linebreak"), "linebreak");
        assert_eq!(sym_norm("BA"), "ba");
        assert_eq!(sym_norm("ba"), "ba");
        assert_eq!(sym_norm("Greek"), "greek");
        assert_eq!(sym_norm("isGreek"), "greek");
        assert_eq!(sym_norm("IS_Greek"), "greek");
        assert_eq!(sym_norm("isc"), "isc");
        assert_eq!(sym_norm("is c"), "isc");
        assert_eq!(sym_norm("is_c"), "isc");
    }

    #[test]
    fn valid_utf8_symbolic() {
        let mut x = b"abc\xFFxyz".to_vec();
        let y = symbolic_name_normalize_bytes(&mut x);
        assert_eq!(y, b"abcxyz");
    }
}