1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// Copyright 2016 Masaki Hara
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A library for reading and writing ASN.1 data.
//!
//! # Examples
//!
//! ## Encoding/decoding simple data
//!
//! A type implementing [`DEREncodable`][derencodable] can be easily encoded:
//!
//! [derencodable]: trait.DEREncodable.html
//!
//! ```
//! extern crate yasna;
//!
//! fn main() {
//!     let der = yasna::encode_der(&(10, true));
//!     println!("(10, true) = {:?}", der);
//! }
//! ```
//!
//! Similarly, a type implementing [`BERDecodable`][berdecodable] can be
//! easily decoded:
//!
//! [berdecodable]: trait.BERDecodable.html
//!
//! ```
//! extern crate yasna;
//!
//! fn main() {
//!     let asn: (i64, bool) = yasna::decode_der(
//!         &[48, 6, 2, 1, 10, 1, 1, 255]).unwrap();
//!     println!("{:?} = [48, 6, 2, 1, 10, 1, 1, 255]", asn);
//! }
//! ```
//!
//! ## Encoding/decoding by hand
//!
//! Default `DEREncodable`/`BERDecodable` implementations can't handle
//! all ASN.1 type. In many cases you have to write your reader/writer
//! by hand.
//!
//! To serialize ASN.1 data, you can use [`construct_der`][construct_der].
//!
//! [construct_der]: fn.construct_der.html
//!
//! ```
//! extern crate yasna;
//!
//! fn main() {
//!     let der = yasna::construct_der(|writer| {
//!         writer.write_sequence(|writer| {
//!             writer.next().write_i64(10);
//!             writer.next().write_bool(true);
//!         })
//!     });
//!     println!("(10, true) = {:?}", der);
//! }
//! ```
//!
//! To deserialize ASN.1 data, you can use [`parse_ber`][parse_ber]
//! or [`parse_der`][parse_der].
//!
//! [parse_ber]: fn.parse_ber.html
//! [parse_der]: fn.parse_der.html
//!
//! ```
//! extern crate yasna;
//!
//! fn main() {
//!     let asn = yasna::parse_der(&[48, 6, 2, 1, 10, 1, 1, 255], |reader| {
//!         reader.read_sequence(|reader| {
//!             let i = try!(reader.next().read_i64());
//!             let b = try!(reader.next().read_bool());
//!             return Ok((i, b));
//!         })
//!     }).unwrap();
//!     println!("{:?} = [48, 6, 2, 1, 10, 1, 1, 255]", asn);
//! }
//! ```

#![forbid(unsafe_code)]
#![deny(missing_docs)]

#[cfg(feature = "num-bigint")]
extern crate num_bigint;
#[cfg(test)]
extern crate num_traits;

#[cfg(feature = "bit-vec")]
extern crate bit_vec;
#[cfg(feature = "chrono")]
extern crate chrono;

pub mod tags;
pub mod models;
mod writer;
mod reader;
mod deserializer;
mod serializer;

pub use writer::{construct_der,try_construct_der};
pub use writer::{construct_der_seq,try_construct_der_seq};
pub use writer::{DERWriter,DERWriterSeq,DERWriterSet};
pub use reader::{parse_ber_general,parse_ber,parse_der,BERMode};
pub use reader::{BERReader,BERReaderSeq,BERReaderSet};
pub use reader::{ASN1Error,ASN1ErrorKind,ASN1Result};
pub use deserializer::{BERDecodable,decode_ber_general,decode_ber,decode_der};
pub use serializer::{DEREncodable,encode_der};

/// A value of the ASN.1 primitive/constructed ("P/C") bit.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum PCBit {
    /// The bit's value is "Primitive"
    Primitive = 0,
    /// The bit's value is "Constructed"
    Constructed = 1,
}

/// An ASN.1 tag class, used in [`Tag`][tag].
///
/// [tag]: struct.Tag.html
///
/// A tag class is one of:
///
/// - UNIVERSAL
/// - APPLICATION
/// - context specific
/// - PRIVATE
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub enum TagClass {
    /// The UNIVERSAL tag class
    Universal = 0,
    /// The APPLICATION tag class
    Application = 1,
    /// The CONTEXT-SPECIFIC tag class
    ContextSpecific = 2,
    /// The PRIVATE tag class
    Private = 3,
}

const TAG_CLASSES : [TagClass; 4] = [
    TagClass::Universal,
    TagClass::Application,
    TagClass::ContextSpecific,
    TagClass::Private,
];

/// An ASN.1 tag.
///
/// An ASN.1 tag is a pair of a tag class and a tag number.
///
/// - A tag class is one of:
///   - UNIVERSAL
///   - APPLICATION
///   - context specific
///   - PRIVATE
/// - A tag number is a nonnegative integer.
///   In this library. Tag numbers are assumed to be in `u64`.
#[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd, Hash)]
pub struct Tag {
    /// The tag class
    pub tag_class: TagClass,
    /// The tag number
    pub tag_number: u64,
}

impl Tag {
    /// Constructs an APPLICATION tag, namely \[APPLICATION n\].
    pub fn application(tag_number: u64) -> Tag {
        return Tag {
            tag_class: TagClass::Application,
            tag_number,
        }
    }
    /// Constructs a context specific tag, namely \[n\].
    pub fn context(tag_number: u64) -> Tag {
        return Tag {
            tag_class: TagClass::ContextSpecific,
            tag_number,
        }
    }
    /// Constructs a PRIVATE tag, namely \[PRIVATE n\].
    pub fn private(tag_number: u64) -> Tag {
        return Tag {
            tag_class: TagClass::Private,
            tag_number,
        }
    }
}