1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
#![cfg_attr(not(feature = "rt"), allow(dead_code))]

use crate::loom::cell::UnsafeCell;
use crate::loom::sync::atomic::{AtomicBool, AtomicUsize};
use crate::loom::sync::{Arc, Mutex};
use crate::util::bit;
use std::fmt;
use std::mem;
use std::ops;
use std::ptr;
use std::sync::atomic::Ordering::Relaxed;

/// Amortized allocation for homogeneous data types.
///
/// The slab pre-allocates chunks of memory to store values. It uses a similar
/// growing strategy as `Vec`. When new capacity is needed, the slab grows by
/// 2x.
///
/// # Pages
///
/// Unlike `Vec`, growing does not require moving existing elements. Instead of
/// being a continuous chunk of memory for all elements, `Slab` is an array of
/// arrays. The top-level array is an array of pages. Each page is 2x bigger
/// than the previous one. When the slab grows, a new page is allocated.
///
/// Pages are lazily initialized.
///
/// # Allocating
///
/// When allocating an object, first previously used slots are reused. If no
/// previously used slot is available, a new slot is initialized in an existing
/// page. If all pages are full, then a new page is allocated.
///
/// When an allocated object is released, it is pushed into it's page's free
/// list. Allocating scans all pages for a free slot.
///
/// # Indexing
///
/// The slab is able to index values using an address. Even when the indexed
/// object has been released, it is still safe to index. This is a key ability
/// for using the slab with the I/O driver. Addresses are registered with the
/// OS's selector and I/O resources can be released without synchronizing with
/// the OS.
///
/// # Compaction
///
/// `Slab::compact` will release pages that have been allocated but are no
/// longer used. This is done by scanning the pages and finding pages with no
/// allocated objects. These pages are then freed.
///
/// # Synchronization
///
/// The `Slab` structure is able to provide (mostly) unsynchronized reads to
/// values stored in the slab. Insertions and removals are synchronized. Reading
/// objects via `Ref` is fully unsynchronized. Indexing objects uses amortized
/// synchronization.
///
pub(crate) struct Slab<T> {
    /// Array of pages. Each page is synchronized.
    pages: [Arc<Page<T>>; NUM_PAGES],

    /// Caches the array pointer & number of initialized slots.
    cached: [CachedPage<T>; NUM_PAGES],
}

/// Allocate values in the associated slab.
pub(crate) struct Allocator<T> {
    /// Pages in the slab. The first page has a capacity of 16 elements. Each
    /// following page has double the capacity of the previous page.
    ///
    /// Each returned `Ref` holds a reference count to this `Arc`.
    pages: [Arc<Page<T>>; NUM_PAGES],
}

/// References a slot in the slab. Indexing a slot using an `Address` is memory
/// safe even if the slot has been released or the page has been deallocated.
/// However, it is not guaranteed that the slot has not been reused and is now
/// represents a different value.
///
/// The I/O driver uses a counter to track the slot's generation. Once accessing
/// the slot, the generations are compared. If they match, the value matches the
/// address.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub(crate) struct Address(usize);

/// An entry in the slab.
pub(crate) trait Entry: Default {
    /// Reset the entry's value and track the generation.
    fn reset(&self);
}

/// A reference to a value stored in the slab
pub(crate) struct Ref<T> {
    value: *const Value<T>,
}

/// Maximum number of pages a slab can contain.
const NUM_PAGES: usize = 19;

/// Minimum number of slots a page can contain.
const PAGE_INITIAL_SIZE: usize = 32;
const PAGE_INDEX_SHIFT: u32 = PAGE_INITIAL_SIZE.trailing_zeros() + 1;

/// A page in the slab
struct Page<T> {
    /// Slots
    slots: Mutex<Slots<T>>,

    // Number of slots currently being used. This is not guaranteed to be up to
    // date and should only be used as a hint.
    used: AtomicUsize,

    // Set to `true` when the page has been allocated.
    allocated: AtomicBool,

    // The number of slots the page can hold.
    len: usize,

    // Length of all previous pages combined
    prev_len: usize,
}

struct CachedPage<T> {
    /// Pointer to the page's slots.
    slots: *const Slot<T>,

    /// Number of initialized slots.
    init: usize,
}

/// Page state
struct Slots<T> {
    /// Slots
    slots: Vec<Slot<T>>,

    head: usize,

    /// Number of slots currently in use.
    used: usize,
}

unsafe impl<T: Sync> Sync for Page<T> {}
unsafe impl<T: Sync> Send for Page<T> {}
unsafe impl<T: Sync> Sync for CachedPage<T> {}
unsafe impl<T: Sync> Send for CachedPage<T> {}
unsafe impl<T: Sync> Sync for Ref<T> {}
unsafe impl<T: Sync> Send for Ref<T> {}

/// A slot in the slab. Contains slot-specific metadata.
///
/// `#[repr(C)]` guarantees that the struct starts w/ `value`. We use pointer
/// math to map a value pointer to an index in the page.
#[repr(C)]
struct Slot<T> {
    /// Pointed to by `Ref`.
    value: UnsafeCell<Value<T>>,

    /// Next entry in the free list.
    next: u32,
}

/// Value paired with a reference to the page
struct Value<T> {
    /// Value stored in the value
    value: T,

    /// Pointer to the page containing the slot.
    ///
    /// A raw pointer is used as this creates a ref cycle.
    page: *const Page<T>,
}

impl<T> Slab<T> {
    /// Create a new, empty, slab
    pub(crate) fn new() -> Slab<T> {
        // Initializing arrays is a bit annoying. Instead of manually writing
        // out an array and every single entry, `Default::default()` is used to
        // initialize the array, then the array is iterated and each value is
        // initialized.
        let mut slab = Slab {
            pages: Default::default(),
            cached: Default::default(),
        };

        let mut len = PAGE_INITIAL_SIZE;
        let mut prev_len: usize = 0;

        for page in &mut slab.pages {
            let page = Arc::get_mut(page).unwrap();
            page.len = len;
            page.prev_len = prev_len;
            len *= 2;
            prev_len += page.len;

            // Ensure we don't exceed the max address space.
            debug_assert!(
                page.len - 1 + page.prev_len < (1 << 24),
                "max = {:b}",
                page.len - 1 + page.prev_len
            );
        }

        slab
    }

    /// Returns a new `Allocator`.
    ///
    /// The `Allocator` supports concurrent allocation of objects.
    pub(crate) fn allocator(&self) -> Allocator<T> {
        Allocator {
            pages: self.pages.clone(),
        }
    }

    /// Returns a reference to the value stored at the given address.
    ///
    /// `&mut self` is used as the call may update internal cached state.
    pub(crate) fn get(&mut self, addr: Address) -> Option<&T> {
        let page_idx = addr.page();
        let slot_idx = self.pages[page_idx].slot(addr);

        // If the address references a slot that was last seen as uninitialized,
        // the `CachedPage` is updated. This requires acquiring the page lock
        // and updating the slot pointer and initialized offset.
        if self.cached[page_idx].init <= slot_idx {
            self.cached[page_idx].refresh(&self.pages[page_idx]);
        }

        // If the address **still** references an uninitialized slot, then the
        // address is invalid and `None` is returned.
        if self.cached[page_idx].init <= slot_idx {
            return None;
        }

        // Get a reference to the value. The lifetime of the returned reference
        // is bound to `&self`. The only way to invalidate the underlying memory
        // is to call `compact()`. The lifetimes prevent calling `compact()`
        // while references to values are outstanding.
        //
        // The referenced data is never mutated. Only `&self` references are
        // used and the data is `Sync`.
        Some(self.cached[page_idx].get(slot_idx))
    }

    /// Calls the given function with a reference to each slot in the slab. The
    /// slot may not be in-use.
    ///
    /// This is used by the I/O driver during the shutdown process to notify
    /// each pending task.
    pub(crate) fn for_each(&mut self, mut f: impl FnMut(&T)) {
        for page_idx in 0..self.pages.len() {
            // It is required to avoid holding the lock when calling the
            // provided function. The function may attempt to acquire the lock
            // itself. If we hold the lock here while calling `f`, a deadlock
            // situation is possible.
            //
            // Instead of iterating the slots directly in `page`, which would
            // require holding the lock, the cache is updated and the slots are
            // iterated from the cache.
            self.cached[page_idx].refresh(&self.pages[page_idx]);

            for slot_idx in 0..self.cached[page_idx].init {
                f(self.cached[page_idx].get(slot_idx));
            }
        }
    }

    // Release memory back to the allocator.
    //
    // If pages are empty, the underlying memory is released back to the
    // allocator.
    pub(crate) fn compact(&mut self) {
        // Iterate each page except the very first one. The very first page is
        // never freed.
        for (idx, page) in self.pages.iter().enumerate().skip(1) {
            if page.used.load(Relaxed) != 0 || !page.allocated.load(Relaxed) {
                // If the page has slots in use or the memory has not been
                // allocated then it cannot be compacted.
                continue;
            }

            let mut slots = match page.slots.try_lock() {
                Some(slots) => slots,
                // If the lock cannot be acquired due to being held by another
                // thread, don't try to compact the page.
                _ => continue,
            };

            if slots.used > 0 || slots.slots.capacity() == 0 {
                // The page is in use or it has not yet been allocated. Either
                // way, there is no more work to do.
                continue;
            }

            page.allocated.store(false, Relaxed);

            // Remove the slots vector from the page. This is done so that the
            // freeing process is done outside of the lock's critical section.
            let vec = mem::replace(&mut slots.slots, vec![]);
            slots.head = 0;

            // Drop the lock so we can drop the vector outside the lock below.
            drop(slots);

            debug_assert!(
                self.cached[idx].slots.is_null() || self.cached[idx].slots == vec.as_ptr(),
                "cached = {:?}; actual = {:?}",
                self.cached[idx].slots,
                vec.as_ptr(),
            );

            // Clear cache
            self.cached[idx].slots = ptr::null();
            self.cached[idx].init = 0;

            drop(vec);
        }
    }
}

impl<T> fmt::Debug for Slab<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        debug(fmt, "Slab", &self.pages[..])
    }
}

impl<T: Entry> Allocator<T> {
    /// Allocate a new entry and return a handle to the entry.
    ///
    /// Scans pages from smallest to biggest, stopping when a slot is found.
    /// Pages are allocated if necessary.
    ///
    /// Returns `None` if the slab is full.
    pub(crate) fn allocate(&self) -> Option<(Address, Ref<T>)> {
        // Find the first available slot.
        for page in &self.pages[..] {
            if let Some((addr, val)) = Page::allocate(page) {
                return Some((addr, val));
            }
        }

        None
    }
}

impl<T> fmt::Debug for Allocator<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        debug(fmt, "slab::Allocator", &self.pages[..])
    }
}

impl<T> ops::Deref for Ref<T> {
    type Target = T;

    fn deref(&self) -> &T {
        // Safety: `&mut` is never handed out to the underlying value. The page
        // is not freed until all `Ref` values are dropped.
        unsafe { &(*self.value).value }
    }
}

impl<T> Drop for Ref<T> {
    fn drop(&mut self) {
        // Safety: `&mut` is never handed out to the underlying value. The page
        // is not freed until all `Ref` values are dropped.
        let _ = unsafe { (*self.value).release() };
    }
}

impl<T: fmt::Debug> fmt::Debug for Ref<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        (**self).fmt(fmt)
    }
}

impl<T: Entry> Page<T> {
    // Allocates an object, returns the ref and address.
    //
    // `self: &Arc<Page<T>>` is avoided here as this would not work with the
    // loom `Arc`.
    fn allocate(me: &Arc<Page<T>>) -> Option<(Address, Ref<T>)> {
        // Before acquiring the lock, use the `used` hint.
        if me.used.load(Relaxed) == me.len {
            return None;
        }

        // Allocating objects requires synchronization
        let mut locked = me.slots.lock();

        if locked.head < locked.slots.len() {
            // Re-use an already initialized slot.
            //
            // Help out the borrow checker
            let locked = &mut *locked;

            // Get the index of the slot at the head of the free stack. This is
            // the slot that will be reused.
            let idx = locked.head;
            let slot = &locked.slots[idx];

            // Update the free stack head to point to the next slot.
            locked.head = slot.next as usize;

            // Increment the number of used slots
            locked.used += 1;
            me.used.store(locked.used, Relaxed);

            // Reset the slot
            slot.value.with(|ptr| unsafe { (*ptr).value.reset() });

            // Return a reference to the slot
            Some((me.addr(idx), slot.gen_ref(me)))
        } else if me.len == locked.slots.len() {
            // The page is full
            None
        } else {
            // No initialized slots are available, but the page has more
            // capacity. Initialize a new slot.
            let idx = locked.slots.len();

            if idx == 0 {
                // The page has not yet been allocated. Allocate the storage for
                // all page slots.
                locked.slots.reserve_exact(me.len);
            }

            // Initialize a new slot
            locked.slots.push(Slot {
                value: UnsafeCell::new(Value {
                    value: Default::default(),
                    page: &**me as *const _,
                }),
                next: 0,
            });

            // Increment the head to indicate the free stack is empty
            locked.head += 1;

            // Increment the number of used slots
            locked.used += 1;
            me.used.store(locked.used, Relaxed);
            me.allocated.store(true, Relaxed);

            debug_assert_eq!(locked.slots.len(), locked.head);

            Some((me.addr(idx), locked.slots[idx].gen_ref(me)))
        }
    }
}

impl<T> Page<T> {
    /// Returns the slot index within the current page referenced by the given
    /// address.
    fn slot(&self, addr: Address) -> usize {
        addr.0 - self.prev_len
    }

    /// Returns the address for the given slot
    fn addr(&self, slot: usize) -> Address {
        Address(slot + self.prev_len)
    }
}

impl<T> Default for Page<T> {
    fn default() -> Page<T> {
        Page {
            used: AtomicUsize::new(0),
            allocated: AtomicBool::new(false),
            slots: Mutex::new(Slots {
                slots: Vec::new(),
                head: 0,
                used: 0,
            }),
            len: 0,
            prev_len: 0,
        }
    }
}

impl<T> Page<T> {
    /// Release a slot into the page's free list
    fn release(&self, value: *const Value<T>) {
        let mut locked = self.slots.lock();

        let idx = locked.index_for(value);
        locked.slots[idx].next = locked.head as u32;
        locked.head = idx;
        locked.used -= 1;

        self.used.store(locked.used, Relaxed);
    }
}

impl<T> CachedPage<T> {
    /// Refresh the cache
    fn refresh(&mut self, page: &Page<T>) {
        let slots = page.slots.lock();

        if !slots.slots.is_empty() {
            self.slots = slots.slots.as_ptr();
            self.init = slots.slots.len();
        }
    }

    // Get a value by index
    fn get(&self, idx: usize) -> &T {
        assert!(idx < self.init);

        // Safety: Pages are allocated concurrently, but are only ever
        // **deallocated** by `Slab`. `Slab` will always have a more
        // conservative view on the state of the slot array. Once `CachedPage`
        // sees a slot pointer and initialized offset, it will remain valid
        // until `compact()` is called. The `compact()` function also updates
        // `CachedPage`.
        unsafe {
            let slot = self.slots.add(idx);
            let value = slot as *const Value<T>;

            &(*value).value
        }
    }
}

impl<T> Default for CachedPage<T> {
    fn default() -> CachedPage<T> {
        CachedPage {
            slots: ptr::null(),
            init: 0,
        }
    }
}

impl<T> Slots<T> {
    /// Maps a slot pointer to an offset within the current page.
    ///
    /// The pointer math removes the `usize` index from the `Ref` struct,
    /// shrinking the struct to a single pointer size. The contents of the
    /// function is safe, the resulting `usize` is bounds checked before being
    /// used.
    ///
    /// # Panics
    ///
    /// panics if the provided slot pointer is not contained by the page.
    fn index_for(&self, slot: *const Value<T>) -> usize {
        use std::mem;

        let base = &self.slots[0] as *const _ as usize;

        assert!(base != 0, "page is unallocated");

        let slot = slot as usize;
        let width = mem::size_of::<Slot<T>>();

        assert!(slot >= base, "unexpected pointer");

        let idx = (slot - base) / width;
        assert!(idx < self.slots.len() as usize);

        idx
    }
}

impl<T: Entry> Slot<T> {
    /// Generates a `Ref` for the slot. This involves bumping the page's ref count.
    fn gen_ref(&self, page: &Arc<Page<T>>) -> Ref<T> {
        // The ref holds a ref on the page. The `Arc` is forgotten here and is
        // resurrected in `release` when the `Ref` is dropped. By avoiding to
        // hold on to an explicit `Arc` value, the struct size of `Ref` is
        // reduced.
        mem::forget(page.clone());
        let slot = self as *const Slot<T>;
        let value = slot as *const Value<T>;

        Ref { value }
    }
}

impl<T> Value<T> {
    // Release the slot, returning the `Arc<Page<T>>` logically owned by the ref.
    fn release(&self) -> Arc<Page<T>> {
        // Safety: called by `Ref`, which owns an `Arc<Page<T>>` instance.
        let page = unsafe { Arc::from_raw(self.page) };
        page.release(self as *const _);
        page
    }
}

impl Address {
    fn page(self) -> usize {
        // Since every page is twice as large as the previous page, and all page
        // sizes are powers of two, we can determine the page index that
        // contains a given address by shifting the address down by the smallest
        // page size and looking at how many twos places necessary to represent
        // that number, telling us what power of two page size it fits inside
        // of. We can determine the number of twos places by counting the number
        // of leading zeros (unused twos places) in the number's binary
        // representation, and subtracting that count from the total number of
        // bits in a word.
        let slot_shifted = (self.0 + PAGE_INITIAL_SIZE) >> PAGE_INDEX_SHIFT;
        (bit::pointer_width() - slot_shifted.leading_zeros()) as usize
    }

    pub(crate) const fn as_usize(self) -> usize {
        self.0
    }

    pub(crate) fn from_usize(src: usize) -> Address {
        Address(src)
    }
}

fn debug<T>(fmt: &mut fmt::Formatter<'_>, name: &str, pages: &[Arc<Page<T>>]) -> fmt::Result {
    let mut capacity = 0;
    let mut len = 0;

    for page in pages {
        if page.allocated.load(Relaxed) {
            capacity += page.len;
            len += page.used.load(Relaxed);
        }
    }

    fmt.debug_struct(name)
        .field("len", &len)
        .field("capacity", &capacity)
        .finish()
}

#[cfg(all(test, not(loom)))]
mod test {
    use super::*;
    use std::sync::atomic::AtomicUsize;
    use std::sync::atomic::Ordering::SeqCst;

    struct Foo {
        cnt: AtomicUsize,
        id: AtomicUsize,
    }

    impl Default for Foo {
        fn default() -> Foo {
            Foo {
                cnt: AtomicUsize::new(0),
                id: AtomicUsize::new(0),
            }
        }
    }

    impl Entry for Foo {
        fn reset(&self) {
            self.cnt.fetch_add(1, SeqCst);
        }
    }

    #[test]
    fn insert_remove() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();

        let (addr1, foo1) = alloc.allocate().unwrap();
        foo1.id.store(1, SeqCst);
        assert_eq!(0, foo1.cnt.load(SeqCst));

        let (addr2, foo2) = alloc.allocate().unwrap();
        foo2.id.store(2, SeqCst);
        assert_eq!(0, foo2.cnt.load(SeqCst));

        assert_eq!(1, slab.get(addr1).unwrap().id.load(SeqCst));
        assert_eq!(2, slab.get(addr2).unwrap().id.load(SeqCst));

        drop(foo1);

        assert_eq!(1, slab.get(addr1).unwrap().id.load(SeqCst));

        let (addr3, foo3) = alloc.allocate().unwrap();
        assert_eq!(addr3, addr1);
        assert_eq!(1, foo3.cnt.load(SeqCst));
        foo3.id.store(3, SeqCst);
        assert_eq!(3, slab.get(addr3).unwrap().id.load(SeqCst));

        drop(foo2);
        drop(foo3);

        slab.compact();

        // The first page is never released
        assert!(slab.get(addr1).is_some());
        assert!(slab.get(addr2).is_some());
        assert!(slab.get(addr3).is_some());
    }

    #[test]
    fn insert_many() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();
        let mut entries = vec![];

        for i in 0..10_000 {
            let (addr, val) = alloc.allocate().unwrap();
            val.id.store(i, SeqCst);
            entries.push((addr, val));
        }

        for (i, (addr, v)) in entries.iter().enumerate() {
            assert_eq!(i, v.id.load(SeqCst));
            assert_eq!(i, slab.get(*addr).unwrap().id.load(SeqCst));
        }

        entries.clear();

        for i in 0..10_000 {
            let (addr, val) = alloc.allocate().unwrap();
            val.id.store(10_000 - i, SeqCst);
            entries.push((addr, val));
        }

        for (i, (addr, v)) in entries.iter().enumerate() {
            assert_eq!(10_000 - i, v.id.load(SeqCst));
            assert_eq!(10_000 - i, slab.get(*addr).unwrap().id.load(SeqCst));
        }
    }

    #[test]
    fn insert_drop_reverse() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();
        let mut entries = vec![];

        for i in 0..10_000 {
            let (addr, val) = alloc.allocate().unwrap();
            val.id.store(i, SeqCst);
            entries.push((addr, val));
        }

        for _ in 0..10 {
            // Drop 1000 in reverse
            for _ in 0..1_000 {
                entries.pop();
            }

            // Check remaining
            for (i, (addr, v)) in entries.iter().enumerate() {
                assert_eq!(i, v.id.load(SeqCst));
                assert_eq!(i, slab.get(*addr).unwrap().id.load(SeqCst));
            }
        }
    }

    #[test]
    fn no_compaction_if_page_still_in_use() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();
        let mut entries1 = vec![];
        let mut entries2 = vec![];

        for i in 0..10_000 {
            let (addr, val) = alloc.allocate().unwrap();
            val.id.store(i, SeqCst);

            if i % 2 == 0 {
                entries1.push((addr, val, i));
            } else {
                entries2.push(val);
            }
        }

        drop(entries2);

        for (addr, _, i) in &entries1 {
            assert_eq!(*i, slab.get(*addr).unwrap().id.load(SeqCst));
        }
    }

    #[test]
    fn compact_all() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();
        let mut entries = vec![];

        for _ in 0..2 {
            entries.clear();

            for i in 0..10_000 {
                let (addr, val) = alloc.allocate().unwrap();
                val.id.store(i, SeqCst);

                entries.push((addr, val));
            }

            let mut addrs = vec![];

            for (addr, _) in entries.drain(..) {
                addrs.push(addr);
            }

            slab.compact();

            // The first page is never freed
            for addr in &addrs[PAGE_INITIAL_SIZE..] {
                assert!(slab.get(*addr).is_none());
            }
        }
    }

    #[test]
    fn issue_3014() {
        let mut slab = Slab::<Foo>::new();
        let alloc = slab.allocator();
        let mut entries = vec![];

        for _ in 0..5 {
            entries.clear();

            // Allocate a few pages + 1
            for i in 0..(32 + 64 + 128 + 1) {
                let (addr, val) = alloc.allocate().unwrap();
                val.id.store(i, SeqCst);

                entries.push((addr, val, i));
            }

            for (addr, val, i) in &entries {
                assert_eq!(*i, val.id.load(SeqCst));
                assert_eq!(*i, slab.get(*addr).unwrap().id.load(SeqCst));
            }

            // Release the last entry
            entries.pop();

            // Compact
            slab.compact();

            // Check all the addresses

            for (addr, val, i) in &entries {
                assert_eq!(*i, val.id.load(SeqCst));
                assert_eq!(*i, slab.get(*addr).unwrap().id.load(SeqCst));
            }
        }
    }
}