Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
use std::fmt;
use std::ops::Deref;
use std::slice;

/// A sparse set used for representing ordered NFA states.
///
/// This supports constant time addition and membership testing. Clearing an
/// entire set can also be done in constant time. Iteration yields elements
/// in the order in which they were inserted.
///
/// The data structure is based on: https://research.swtch.com/sparse
/// Note though that we don't actually use uninitialized memory. We generally
/// reuse allocations, so the initial allocation cost is bareable. However,
/// its other properties listed above are extremely useful.
#[derive(Clone)]
pub struct SparseSet {
    /// Dense contains the instruction pointers in the order in which they
    /// were inserted.
    dense: Vec<usize>,
    /// Sparse maps instruction pointers to their location in dense.
    ///
    /// An instruction pointer is in the set if and only if
    /// sparse[ip] < dense.len() && ip == dense[sparse[ip]].
    sparse: Box<[usize]>,
}

impl SparseSet {
    pub fn new(size: usize) -> SparseSet {
        SparseSet {
            dense: Vec::with_capacity(size),
            sparse: vec![0; size].into_boxed_slice(),
        }
    }

    pub fn len(&self) -> usize {
        self.dense.len()
    }

    pub fn is_empty(&self) -> bool {
        self.dense.is_empty()
    }

    pub fn capacity(&self) -> usize {
        self.dense.capacity()
    }

    pub fn insert(&mut self, value: usize) {
        let i = self.len();
        assert!(i < self.capacity());
        self.dense.push(value);
        self.sparse[value] = i;
    }

    pub fn contains(&self, value: usize) -> bool {
        let i = self.sparse[value];
        self.dense.get(i) == Some(&value)
    }

    pub fn clear(&mut self) {
        self.dense.clear();
    }
}

impl fmt::Debug for SparseSet {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "SparseSet({:?})", self.dense)
    }
}

impl Deref for SparseSet {
    type Target = [usize];

    fn deref(&self) -> &Self::Target {
        &self.dense
    }
}

impl<'a> IntoIterator for &'a SparseSet {
    type Item = &'a usize;
    type IntoIter = slice::Iter<'a, usize>;
    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}