Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// Copyright 2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Functionality shared by operations on private keys (ECC keygen and
//! ECDSA signing).

use super::{ops::*, verify_affine_point_is_on_the_curve};
use crate::{
    arithmetic::montgomery::R,
    ec, error,
    limb::{self, LIMB_BYTES},
    rand,
};

/// Generates a random scalar in the range [1, n).
pub fn random_scalar(
    ops: &PrivateKeyOps,
    rng: &dyn rand::SecureRandom,
) -> Result<Scalar, error::Unspecified> {
    let num_limbs = ops.common.num_limbs;
    let mut bytes = [0; ec::SCALAR_MAX_BYTES];
    let bytes = &mut bytes[..(num_limbs * LIMB_BYTES)];
    generate_private_scalar_bytes(ops, rng, bytes)?;
    scalar_from_big_endian_bytes(ops, bytes)
}

pub fn generate_private_scalar_bytes(
    ops: &PrivateKeyOps,
    rng: &dyn rand::SecureRandom,
    out: &mut [u8],
) -> Result<(), error::Unspecified> {
    // [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
    // [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
    // "Key Pair Generation by Testing Candidates".
    //
    // [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf.
    // [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf.

    // TODO: The NSA guide also suggests, in appendix B.1, another mechanism
    // that would avoid the need to use `rng.fill()` more than once. It works
    // by generating an extra 64 bits of random bytes and then reducing the
    // output (mod n). Supposedly, this removes enough of the bias towards
    // small values from the modular reduction, but it isn't obvious that it is
    // sufficient. TODO: Figure out what we can do to mitigate the bias issue
    // and switch to the other mechanism.

    let candidate = out;

    // XXX: The value 100 was chosen to match OpenSSL due to uncertainty of
    // what specific value would be better, but it seems bad to try 100 times.
    for _ in 0..100 {
        // NSA Guide Steps 1, 2, and 3.
        //
        // Since we calculate the length ourselves, it is pointless to check
        // it, since we can only check it by doing the same calculation.

        // NSA Guide Step 4.
        //
        // The requirement that the random number generator has the
        // requested security strength is delegated to `rng`.
        rng.fill(candidate)?;

        // NSA Guide Steps 5, 6, and 7.
        if check_scalar_big_endian_bytes(ops, candidate).is_err() {
            continue;
        }

        // NSA Guide Step 8 is done in `public_from_private()`.

        // NSA Guide Step 9.
        return Ok(());
    }

    Err(error::Unspecified)
}

// The underlying X25519 and Ed25519 code uses an [u8; 32] to store the private
// key. To make the ECDH and ECDSA code similar to that, we also store the
// private key that way, which means we have to convert it to a Scalar whenever
// we need to use it.
#[inline]
pub fn private_key_as_scalar(ops: &PrivateKeyOps, private_key: &ec::Seed) -> Scalar {
    // This cannot fail because we know the private key is valid.
    scalar_from_big_endian_bytes(ops, private_key.bytes_less_safe()).unwrap()
}

pub fn check_scalar_big_endian_bytes(
    ops: &PrivateKeyOps,
    bytes: &[u8],
) -> Result<(), error::Unspecified> {
    debug_assert_eq!(bytes.len(), ops.common.num_limbs * LIMB_BYTES);
    scalar_from_big_endian_bytes(ops, bytes).map(|_| ())
}

// Parses a fixed-length (zero-padded) big-endian-encoded scalar in the range
// [1, n). This is constant-time with respect to the actual value *only if* the
// value is actually in range. In other words, this won't leak anything about a
// valid value, but it might leak small amounts of information about an invalid
// value (which constraint it failed).
pub fn scalar_from_big_endian_bytes(
    ops: &PrivateKeyOps,
    bytes: &[u8],
) -> Result<Scalar, error::Unspecified> {
    // [NSA Suite B Implementer's Guide to ECDSA] Appendix A.1.2, and
    // [NSA Suite B Implementer's Guide to NIST SP 800-56A] Appendix B.2,
    // "Key Pair Generation by Testing Candidates".
    //
    // [NSA Suite B Implementer's Guide to ECDSA]: doc/ecdsa.pdf.
    // [NSA Suite B Implementer's Guide to NIST SP 800-56A]: doc/ecdh.pdf.
    //
    // Steps 5, 6, and 7.
    //
    // XXX: The NSA guide says that we should verify that the random scalar is
    // in the range [0, n - 1) and then add one to it so that it is in the range
    // [1, n). Instead, we verify that the scalar is in the range [1, n). This
    // way, we avoid needing to compute or store the value (n - 1), we avoid the
    // need to implement a function to add one to a scalar, and we avoid needing
    // to convert the scalar back into an array of bytes.
    scalar_parse_big_endian_fixed_consttime(ops.common, untrusted::Input::from(bytes))
}

pub fn public_from_private(
    ops: &PrivateKeyOps,
    public_out: &mut [u8],
    my_private_key: &ec::Seed,
) -> Result<(), error::Unspecified> {
    let elem_and_scalar_bytes = ops.common.num_limbs * LIMB_BYTES;
    debug_assert_eq!(public_out.len(), 1 + (2 * elem_and_scalar_bytes));
    let my_private_key = private_key_as_scalar(ops, my_private_key);
    let my_public_key = ops.point_mul_base(&my_private_key);
    public_out[0] = 4; // Uncompressed encoding.
    let (x_out, y_out) = (&mut public_out[1..]).split_at_mut(elem_and_scalar_bytes);

    // `big_endian_affine_from_jacobian` verifies that the point is not at
    // infinity and is on the curve.
    big_endian_affine_from_jacobian(ops, Some(x_out), Some(y_out), &my_public_key)
}

pub fn affine_from_jacobian(
    ops: &PrivateKeyOps,
    p: &Point,
) -> Result<(Elem<R>, Elem<R>), error::Unspecified> {
    let z = ops.common.point_z(p);

    // Since we restrict our private key to the range [1, n), the curve has
    // prime order, and we verify that the peer's point is on the curve,
    // there's no way that the result can be at infinity. But, use `assert!`
    // instead of `debug_assert!` anyway
    assert!(ops.common.elem_verify_is_not_zero(&z).is_ok());

    let x = ops.common.point_x(p);
    let y = ops.common.point_y(p);

    let zz_inv = ops.elem_inverse_squared(&z);

    let x_aff = ops.common.elem_product(&x, &zz_inv);

    // `y_aff` is needed to validate the point is on the curve. It is also
    // needed in the non-ECDH case where we need to output it.
    let y_aff = {
        let zzzz_inv = ops.common.elem_squared(&zz_inv);
        let zzz_inv = ops.common.elem_product(&z, &zzzz_inv);
        ops.common.elem_product(&y, &zzz_inv)
    };

    // If we validated our inputs correctly and then computed (x, y, z), then
    // (x, y, z) will be on the curve. See
    // `verify_affine_point_is_on_the_curve_scaled` for the motivation.
    verify_affine_point_is_on_the_curve(ops.common, (&x_aff, &y_aff))?;

    Ok((x_aff, y_aff))
}

pub fn big_endian_affine_from_jacobian(
    ops: &PrivateKeyOps,
    x_out: Option<&mut [u8]>,
    y_out: Option<&mut [u8]>,
    p: &Point,
) -> Result<(), error::Unspecified> {
    let (x_aff, y_aff) = affine_from_jacobian(ops, p)?;
    let num_limbs = ops.common.num_limbs;
    if let Some(x_out) = x_out {
        let x = ops.common.elem_unencoded(&x_aff);
        limb::big_endian_from_limbs(&x.limbs[..num_limbs], x_out);
    }
    if let Some(y_out) = y_out {
        let y = ops.common.elem_unencoded(&y_aff);
        limb::big_endian_from_limbs(&y.limbs[..num_limbs], y_out);
    }

    Ok(())
}