Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
use crate::Adler32;
use std::ops::{AddAssign, MulAssign, RemAssign};

impl Adler32 {
    pub(crate) fn compute(&mut self, bytes: &[u8]) {
        // The basic algorithm is, for every byte:
        //   a = (a + byte) % MOD
        //   b = (b + a) % MOD
        // where MOD = 65521.
        //
        // For efficiency, we can defer the `% MOD` operations as long as neither a nor b overflows:
        // - Between calls to `write`, we ensure that a and b are always in range 0..MOD.
        // - We use 32-bit arithmetic in this function.
        // - Therefore, a and b must not increase by more than 2^32-MOD without performing a `% MOD`
        //   operation.
        //
        // According to Wikipedia, b is calculated as follows for non-incremental checksumming:
        //   b = n×D1 + (n−1)×D2 + (n−2)×D3 + ... + Dn + n*1 (mod 65521)
        // Where n is the number of bytes and Di is the i-th Byte. We need to change this to account
        // for the previous values of a and b, as well as treat every input Byte as being 255:
        //   b_inc = n×255 + (n-1)×255 + ... + 255 + n*65520
        // Or in other words:
        //   b_inc = n*65520 + n(n+1)/2*255
        // The max chunk size is thus the largest value of n so that b_inc <= 2^32-65521.
        //   2^32-65521 = n*65520 + n(n+1)/2*255
        // Plugging this into an equation solver since I can't math gives n = 5552.18..., so 5552.
        //
        // On top of the optimization outlined above, the algorithm can also be parallelized with a
        // bit more work:
        //
        // Note that b is a linear combination of a vector of input bytes (D1, ..., Dn).
        //
        // If we fix some value k<N and rewrite indices 1, ..., N as
        //
        //   1_1, 1_2, ..., 1_k, 2_1, ..., 2_k, ..., (N/k)_k,
        //
        // then we can express a and b in terms of sums of smaller sequences kb and ka:
        //
        //   ka(j) := D1_j + D2_j + ... + D(N/k)_j where j <= k
        //   kb(j) := (N/k)*D1_j + (N/k-1)*D2_j + ... + D(N/k)_j where j <= k
        //
        //  a = ka(1) + ka(2) + ... + ka(k) + 1
        //  b = k*(kb(1) + kb(2) + ... + kb(k)) - 1*ka(2) - ...  - (k-1)*ka(k) + N
        //
        // We use this insight to unroll the main loop and process k=4 bytes at a time.
        // The resulting code is highly amenable to SIMD acceleration, although the immediate speedups
        // stem from increased pipeline parallelism rather than auto-vectorization.
        //
        // This technique is described in-depth (here:)[https://software.intel.com/content/www/us/\
        // en/develop/articles/fast-computation-of-fletcher-checksums.html]

        const MOD: u32 = 65521;
        const CHUNK_SIZE: usize = 5552 * 4;

        let mut a = u32::from(self.a);
        let mut b = u32::from(self.b);
        let mut a_vec = U32X4([0; 4]);
        let mut b_vec = a_vec;

        let (bytes, remainder) = bytes.split_at(bytes.len() - bytes.len() % 4);

        // iterate over 4 bytes at a time
        let chunk_iter = bytes.chunks_exact(CHUNK_SIZE);
        let remainder_chunk = chunk_iter.remainder();
        for chunk in chunk_iter {
            for byte_vec in chunk.chunks_exact(4) {
                let val = U32X4::from(byte_vec);
                a_vec += val;
                b_vec += a_vec;
            }
            b += CHUNK_SIZE as u32 * a;
            a_vec %= MOD;
            b_vec %= MOD;
            b %= MOD;
        }
        // special-case the final chunk because it may be shorter than the rest
        for byte_vec in remainder_chunk.chunks_exact(4) {
            let val = U32X4::from(byte_vec);
            a_vec += val;
            b_vec += a_vec;
        }
        b += remainder_chunk.len() as u32 * a;
        a_vec %= MOD;
        b_vec %= MOD;
        b %= MOD;

        // combine the sub-sum results into the main sum
        b_vec *= 4;
        b_vec.0[1] += MOD - a_vec.0[1];
        b_vec.0[2] += (MOD - a_vec.0[2]) * 2;
        b_vec.0[3] += (MOD - a_vec.0[3]) * 3;
        for &av in a_vec.0.iter() {
            a += av;
        }
        for &bv in b_vec.0.iter() {
            b += bv;
        }

        // iterate over the remaining few bytes in serial
        for &byte in remainder.iter() {
            a += u32::from(byte);
            b += a;
        }

        self.a = (a % MOD) as u16;
        self.b = (b % MOD) as u16;
    }
}

#[derive(Copy, Clone)]
struct U32X4([u32; 4]);

impl U32X4 {
    fn from(bytes: &[u8]) -> Self {
        U32X4([
            u32::from(bytes[0]),
            u32::from(bytes[1]),
            u32::from(bytes[2]),
            u32::from(bytes[3]),
        ])
    }
}

impl AddAssign<Self> for U32X4 {
    fn add_assign(&mut self, other: Self) {
        for (s, o) in self.0.iter_mut().zip(other.0.iter()) {
            *s += o;
        }
    }
}

impl RemAssign<u32> for U32X4 {
    fn rem_assign(&mut self, quotient: u32) {
        for s in self.0.iter_mut() {
            *s %= quotient;
        }
    }
}

impl MulAssign<u32> for U32X4 {
    fn mul_assign(&mut self, rhs: u32) {
        for s in self.0.iter_mut() {
            *s *= rhs;
        }
    }
}