Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
use std::io::Read;
use std::io;
use std::cmp;
use std::collections::VecDeque;

/// This is a byte buffer that is built from a vector
/// of byte vectors.  This avoids extra copies when
/// appending a new byte vector, at the expense of
/// more complexity when reading out.
pub struct ChunkVecBuffer {
    chunks: VecDeque<Vec<u8>>,
    limit: usize,
}

impl ChunkVecBuffer {
    pub fn new() -> ChunkVecBuffer {
        ChunkVecBuffer { chunks: VecDeque::new(), limit: 0 }
    }

    /// Sets the upper limit on how many bytes this
    /// object can store.
    ///
    /// Setting a lower limit than the currently stored
    /// data is not an error.
    ///
    /// A zero limit is interpreted as no limit.
    pub fn set_limit(&mut self, new_limit: usize) {
        self.limit = new_limit;
    }

    /// If we're empty
    pub fn is_empty(&self) -> bool {
        self.chunks.is_empty()
    }

    /// How many bytes we're storing
    pub fn len(&self) -> usize {
        let mut len = 0;
        for ch in &self.chunks {
            len += ch.len();
        }
        len
    }

    /// For a proposed append of `len` bytes, how many
    /// bytes should we actually append to adhere to the
    /// currently set `limit`?
    pub fn apply_limit(&self, len: usize) -> usize {
        if self.limit == 0 {
            len
        } else {
            let space =self.limit.saturating_sub(self.len());
            cmp::min(len, space)
        }
    }

    /// Append a copy of `bytes`, perhaps a prefix if
    /// we're near the limit.
    pub fn append_limited_copy(&mut self, bytes: &[u8]) -> usize {
        let take = self.apply_limit(bytes.len());
        self.append(bytes[..take].to_vec());
        take
    }

    /// Take and append the given `bytes`.
    pub fn append(&mut self, bytes: Vec<u8>) -> usize {
        let len = bytes.len();

        if !bytes.is_empty() {
            self.chunks.push_back(bytes);
        }

        len
    }

    /// Take one of the chunks from this object.  This
    /// function panics if the object `is_empty`.
    pub fn take_one(&mut self) -> Vec<u8> {
        self.chunks.pop_front().unwrap()
    }

    /// Read data out of this object, writing it into `buf`
    /// and returning how many bytes were written there.
    pub fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let mut offs = 0;

        while offs < buf.len() && !self.is_empty() {
            let used = self.chunks[0].as_slice().read(&mut buf[offs..])?;

            self.consume(used);
            offs += used;
        }

        Ok(offs)
    }

    fn consume(&mut self, mut used: usize) {
        while used > 0 && !self.is_empty() {
            if used >= self.chunks[0].len() {
                used -= self.chunks[0].len();
                self.take_one();
            } else {
                self.chunks[0] = self.chunks[0].split_off(used);
                used = 0;
            }
        }
    }

    /// Read data out of this object, passing it `wr`
    pub fn write_to(&mut self, wr: &mut dyn io::Write) -> io::Result<usize> {
        if self.is_empty() {
            return Ok(0);
        }

        let used = wr.write_vectored(&self.chunks.iter()
                                     .map(|ch| io::IoSlice::new(ch))
                                     .collect::<Vec<io::IoSlice>>())?;
        self.consume(used);
        Ok(used)
    }
}

#[cfg(test)]
mod test {
    use super::ChunkVecBuffer;

    #[test]
    fn short_append_copy_with_limit()
    {
        let mut cvb = ChunkVecBuffer::new();
        cvb.set_limit(12);
        assert_eq!(cvb.append_limited_copy(b"hello"), 5);
        assert_eq!(cvb.append_limited_copy(b"world"), 5);
        assert_eq!(cvb.append_limited_copy(b"hello"), 2);
        assert_eq!(cvb.append_limited_copy(b"world"), 0);

        let mut buf = [0u8; 12];
        assert_eq!(cvb.read(&mut buf).unwrap(), 12);
        assert_eq!(buf.to_vec(),
                   b"helloworldhe".to_vec());
    }
}