Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! This is a library for controlling colours and formatting, such as
//! red bold text or blue underlined text, on ANSI terminals.
//!
//!
//! ## Basic usage
//!
//! There are two main data structures in this crate that you need to be
//! concerned with: `ANSIString` and `Style`. A `Style` holds stylistic
//! information: colours, whether the text should be bold, or blinking, or
//! whatever. There are also `Colour` variants that represent simple foreground
//! colour styles. An `ANSIString` is a string paired with a `Style`.
//!
//! (Yes, it’s British English, but you won’t have to write “colour” very often.
//! `Style` is used the majority of the time.)
//!
//! To format a string, call the `paint` method on a `Style` or a `Colour`,
//! passing in the string you want to format as the argument. For example,
//! here’s how to get some red text:
//!
//!     use ansi_term::Colour::Red;
//!     println!("This is in red: {}", Red.paint("a red string"));
//!
//! It’s important to note that the `paint` method does *not* actually return a
//! string with the ANSI control characters surrounding it. Instead, it returns
//! an `ANSIString` value that has a `Display` implementation that, when
//! formatted, returns the characters. This allows strings to be printed with a
//! minimum of `String` allocations being performed behind the scenes.
//!
//! If you *do* want to get at the escape codes, then you can convert the
//! `ANSIString` to a string as you would any other `Display` value:
//!
//!     use ansi_term::Colour::Red;
//!     use std::string::ToString;
//!     let red_string = Red.paint("a red string").to_string();
//!
//!
//! ## Bold, underline, background, and other styles
//!
//! For anything more complex than plain foreground colour changes, you need to
//! construct `Style` objects themselves, rather than beginning with a `Colour`.
//! You can do this by chaining methods based on a new `Style`, created with
//! `Style::new()`. Each method creates a new style that has that specific
//! property set. For example:
//!
//!     use ansi_term::Style;
//!     println!("How about some {} and {}?",
//!              Style::new().bold().paint("bold"),
//!              Style::new().underline().paint("underline"));
//!
//! For brevity, these methods have also been implemented for `Colour` values,
//! so you can give your styles a foreground colour without having to begin with
//! an empty `Style` value:
//!
//!     use ansi_term::Colour::{Blue, Yellow};
//!     println!("Demonstrating {} and {}!",
//!              Blue.bold().paint("blue bold"),
//!              Yellow.underline().paint("yellow underline"));
//!     println!("Yellow on blue: {}", Yellow.on(Blue).paint("wow!"));
//!
//! The complete list of styles you can use are: `bold`, `dimmed`, `italic`,
//! `underline`, `blink`, `reverse`, `hidden`, `strikethrough`, and `on` for
//! background colours.
//!
//! In some cases, you may find it easier to change the foreground on an
//! existing `Style` rather than starting from the appropriate `Colour`.
//! You can do this using the `fg` method:
//!
//!     use ansi_term::Style;
//!     use ansi_term::Colour::{Blue, Cyan, Yellow};
//!     println!("Yellow on blue: {}", Style::new().on(Blue).fg(Yellow).paint("yow!"));
//!     println!("Also yellow on blue: {}", Cyan.on(Blue).fg(Yellow).paint("zow!"));
//!
//! Finally, you can turn a `Colour` into a `Style` with the `normal` method.
//! This will produce the exact same `ANSIString` as if you just used the
//! `paint` method on the `Colour` directly, but it’s useful in certain cases:
//! for example, you may have a method that returns `Styles`, and need to
//! represent both the “red bold” and “red, but not bold” styles with values of
//! the same type. The `Style` struct also has a `Default` implementation if you
//! want to have a style with *nothing* set.
//!
//!     use ansi_term::Style;
//!     use ansi_term::Colour::Red;
//!     Red.normal().paint("yet another red string");
//!     Style::default().paint("a completely regular string");
//!
//!
//! ## Extended colours
//!
//! You can access the extended range of 256 colours by using the `Fixed` colour
//! variant, which takes an argument of the colour number to use. This can be
//! included wherever you would use a `Colour`:
//!
//!     use ansi_term::Colour::Fixed;
//!     Fixed(134).paint("A sort of light purple");
//!     Fixed(221).on(Fixed(124)).paint("Mustard in the ketchup");
//!
//! The first sixteen of these values are the same as the normal and bold
//! standard colour variants. There’s nothing stopping you from using these as
//! `Fixed` colours instead, but there’s nothing to be gained by doing so
//! either.
//!
//! You can also access full 24-bit color by using the `RGB` colour variant,
//! which takes separate `u8` arguments for red, green, and blue:
//!
//!     use ansi_term::Colour::RGB;
//!     RGB(70, 130, 180).paint("Steel blue");
//!
//! ## Combining successive coloured strings
//!
//! The benefit of writing ANSI escape codes to the terminal is that they
//! *stack*: you do not need to end every coloured string with a reset code if
//! the text that follows it is of a similar style. For example, if you want to
//! have some blue text followed by some blue bold text, it’s possible to send
//! the ANSI code for blue, followed by the ANSI code for bold, and finishing
//! with a reset code without having to have an extra one between the two
//! strings.
//!
//! This crate can optimise the ANSI codes that get printed in situations like
//! this, making life easier for your terminal renderer. The `ANSIStrings`
//! struct takes a slice of several `ANSIString` values, and will iterate over
//! each of them, printing only the codes for the styles that need to be updated
//! as part of its formatting routine.
//!
//! The following code snippet uses this to enclose a binary number displayed in
//! red bold text inside some red, but not bold, brackets:
//!
//!     use ansi_term::Colour::Red;
//!     use ansi_term::{ANSIString, ANSIStrings};
//!     let some_value = format!("{:b}", 42);
//!     let strings: &[ANSIString<'static>] = &[
//!         Red.paint("["),
//!         Red.bold().paint(some_value),
//!         Red.paint("]"),
//!     ];
//!     println!("Value: {}", ANSIStrings(strings));
//!
//! There are several things to note here. Firstly, the `paint` method can take
//! *either* an owned `String` or a borrowed `&str`. Internally, an `ANSIString`
//! holds a copy-on-write (`Cow`) string value to deal with both owned and
//! borrowed strings at the same time. This is used here to display a `String`,
//! the result of the `format!` call, using the same mechanism as some
//! statically-available `&str` slices. Secondly, that the `ANSIStrings` value
//! works in the same way as its singular counterpart, with a `Display`
//! implementation that only performs the formatting when required.
//!
//! ## Byte strings
//!
//! This library also supports formatting `[u8]` byte strings; this supports
//! applications working with text in an unknown encoding.  `Style` and
//! `Color` support painting `[u8]` values, resulting in an `ANSIByteString`.
//! This type does not implement `Display`, as it may not contain UTF-8, but
//! it does provide a method `write_to` to write the result to any
//! `io::Write`:
//!
//!     use ansi_term::Colour::Green;
//!     Green.paint("user data".as_bytes()).write_to(&mut std::io::stdout()).unwrap();
//!
//! Similarly, the type `ANSIByteStrings` supports writing a list of
//! `ANSIByteString` values with minimal escape sequences:
//!
//!     use ansi_term::Colour::Green;
//!     use ansi_term::ANSIByteStrings;
//!     ANSIByteStrings(&[
//!         Green.paint("user data 1\n".as_bytes()),
//!         Green.bold().paint("user data 2\n".as_bytes()),
//!     ]).write_to(&mut std::io::stdout()).unwrap();


#![crate_name = "ansi_term"]
#![crate_type = "rlib"]
#![crate_type = "dylib"]

#![warn(missing_copy_implementations)]
#![warn(missing_docs)]
#![warn(trivial_casts, trivial_numeric_casts)]
#![warn(unused_extern_crates, unused_qualifications)]

#[cfg(target_os="windows")]
extern crate winapi;

mod ansi;
pub use ansi::{Prefix, Infix, Suffix};

mod style;
pub use style::{Colour, Style};

/// Color is a type alias for Colour for those who can't be bothered.
pub use Colour as Color;

// I'm not beyond calling Colour Colour, rather than Color, but I did
// purposefully name this crate 'ansi-term' so people wouldn't get
// confused when they tried to install it.
//
// Only *after* they'd installed it.

mod difference;
mod display;
pub use display::*;

mod write;

mod windows;
pub use windows::*;

mod debug;