1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
use core::fmt::{self, Debug, Binary};
use crate::{BitFlags, RawBitFlags};

impl<T> fmt::Debug for BitFlags<T>
where
    T: RawBitFlags + fmt::Debug,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        let name = T::bitflags_type_name();
        let bits = DebugBinaryFormatter(&self.val);
        let iter = if !self.is_empty() {
            let iter = T::flag_list().iter().filter(|&&flag| self.contains(flag));
            Some(FlagFormatter(iter))
        } else {
            None
        };

        if !fmt.alternate() {
            // Concise tuple formatting is a better default
            let mut debug = fmt.debug_tuple(name);
            debug.field(&bits);
            if let Some(iter) = iter {
                debug.field(&iter);
            }
            debug.finish()
        } else {
            // Pretty-printed tuples are ugly and hard to read, so use struct format
            let mut debug = fmt.debug_struct(name);
            debug.field("bits", &bits);
            if let Some(iter) = iter {
                debug.field("flags", &iter);
            }
            debug.finish()
        }
    }
}

impl<T> fmt::Binary for BitFlags<T>
where
    T: RawBitFlags,
    T::Type: fmt::Binary,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Binary::fmt(&self.bits(), fmt)
    }
}

impl<T> fmt::Octal for BitFlags<T>
where
    T: RawBitFlags,
    T::Type: fmt::Octal,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Octal::fmt(&self.bits(), fmt)
    }
}

impl<T> fmt::LowerHex for BitFlags<T>
where
    T: RawBitFlags,
    T::Type: fmt::LowerHex,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.bits(), fmt)
    }
}

impl<T> fmt::UpperHex for BitFlags<T>
where
    T: RawBitFlags,
    T::Type: fmt::UpperHex,
{
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::UpperHex::fmt(&self.bits(), fmt)
    }
}

// Format an iterator of flags into "A | B | etc"
struct FlagFormatter<I>(I);

impl<T: Debug, I: Clone + Iterator<Item=T>> Debug for FlagFormatter<I> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut iter = self.0.clone();
        if let Some(val) = iter.next() {
            Debug::fmt(&val, fmt)?;
            for val in iter {
                fmt.write_str(" | ")?;
                Debug::fmt(&val, fmt)?;
            }
            Ok(())
        } else {
            // convention would print "<empty>" or similar here, but this is an
            // internal API that is never called that way, so just do nothing.
            Ok(())
        }
    }
}

// A formatter that obeys format arguments but falls back to binary when
// no explicit format is requested. Supports {:08?}, {:08x?}, etc.
struct DebugBinaryFormatter<'a, F>(&'a F);

impl<'a, F: Debug + Binary + 'a> Debug for DebugBinaryFormatter<'a, F> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Check if {:x?} or {:X?} was used; this is determined via the
        // discriminator of core::fmt::FlagV1::{DebugLowerHex, DebugUpperHex},
        // which is not an accessible type: https://github.com/rust-lang/rust/blob/d65e272a9fe3e61aa5f229c5358e35a909435575/src/libcore/fmt/mod.rs#L306
        // See also: https://github.com/rust-lang/rfcs/pull/2226
        #[allow(deprecated)]
        let format_hex = fmt.flags() >> 4;
        let width = fmt.width().unwrap_or(0);

        if format_hex & 1 != 0 { // FlagV1::DebugLowerHex
            write!(fmt, "{:#0width$x?}", &self.0, width = width)
        } else if format_hex & 2 != 0 { // FlagV1::DebugUpperHex
            write!(fmt, "{:#0width$X?}", &self.0, width = width)
        } else {
            // Fall back to binary otheriwse
            write!(fmt, "{:#0width$b}", &self.0, width = width)
        }
    }
}

#[test]
fn flag_formatter() {
    use core::iter;

    macro_rules! assert_fmt {
        ($fmt:expr, $expr:expr, $expected:expr) => {
            assert_eq!(format!($fmt, FlagFormatter($expr)), $expected)
        };
    }

    assert_fmt!("{:?}", iter::empty::<u8>(), "");
    assert_fmt!("{:?}", iter::once(1), "1");
    assert_fmt!("{:?}", [1, 2].iter(), "1 | 2");
    assert_fmt!("{:?}", [1, 2, 10].iter(), "1 | 2 | 10");
    assert_fmt!("{:02x?}", [1, 2, 10].iter(), "01 | 02 | 0a");
    assert_fmt!("{:#04X?}", [1, 2, 10].iter(), "0x01 | 0x02 | 0x0A");
}

#[test]
fn debug_binary_formatter() {
    macro_rules! assert_fmt {
        ($fmt:expr, $expr:expr, $expected:expr) => {
            assert_eq!(format!($fmt, DebugBinaryFormatter(&$expr)), $expected)
        };
    }

    assert_fmt!("{:?}", 10, "0b1010");
    assert_fmt!("{:#?}", 10, "0b1010");
    assert_fmt!("{:010?}", 10, "0b00001010");
    assert_fmt!("{:010x?}", 10, "0x0000000a");
    assert_fmt!("{:#010X?}", 10, "0x0000000A");
}