1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
use crate::loom::sync::atomic::AtomicUsize; use crate::sync::mpsc::chan; use crate::sync::mpsc::error::{SendError, TryRecvError}; use std::fmt; use std::task::{Context, Poll}; /// Send values to the associated `UnboundedReceiver`. /// /// Instances are created by the /// [`unbounded_channel`](unbounded_channel) function. pub struct UnboundedSender<T> { chan: chan::Tx<T, Semaphore>, } impl<T> Clone for UnboundedSender<T> { fn clone(&self) -> Self { UnboundedSender { chan: self.chan.clone(), } } } impl<T> fmt::Debug for UnboundedSender<T> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("UnboundedSender") .field("chan", &self.chan) .finish() } } /// Receive values from the associated `UnboundedSender`. /// /// Instances are created by the /// [`unbounded_channel`](unbounded_channel) function. pub struct UnboundedReceiver<T> { /// The channel receiver chan: chan::Rx<T, Semaphore>, } impl<T> fmt::Debug for UnboundedReceiver<T> { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("UnboundedReceiver") .field("chan", &self.chan) .finish() } } /// Creates an unbounded mpsc channel for communicating between asynchronous /// tasks without backpressure. /// /// A `send` on this channel will always succeed as long as the receive half has /// not been closed. If the receiver falls behind, messages will be arbitrarily /// buffered. /// /// **Note** that the amount of available system memory is an implicit bound to /// the channel. Using an `unbounded` channel has the ability of causing the /// process to run out of memory. In this case, the process will be aborted. pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) { let (tx, rx) = chan::channel(AtomicUsize::new(0)); let tx = UnboundedSender::new(tx); let rx = UnboundedReceiver::new(rx); (tx, rx) } /// No capacity type Semaphore = AtomicUsize; impl<T> UnboundedReceiver<T> { pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> { UnboundedReceiver { chan } } fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> { self.chan.recv(cx) } /// Receives the next value for this receiver. /// /// `None` is returned when all `Sender` halves have dropped, indicating /// that no further values can be sent on the channel. /// /// # Examples /// /// ``` /// use tokio::sync::mpsc; /// /// #[tokio::main] /// async fn main() { /// let (tx, mut rx) = mpsc::unbounded_channel(); /// /// tokio::spawn(async move { /// tx.send("hello").unwrap(); /// }); /// /// assert_eq!(Some("hello"), rx.recv().await); /// assert_eq!(None, rx.recv().await); /// } /// ``` /// /// Values are buffered: /// /// ``` /// use tokio::sync::mpsc; /// /// #[tokio::main] /// async fn main() { /// let (tx, mut rx) = mpsc::unbounded_channel(); /// /// tx.send("hello").unwrap(); /// tx.send("world").unwrap(); /// /// assert_eq!(Some("hello"), rx.recv().await); /// assert_eq!(Some("world"), rx.recv().await); /// } /// ``` pub async fn recv(&mut self) -> Option<T> { use crate::future::poll_fn; poll_fn(|cx| self.poll_recv(cx)).await } /// Attempts to return a pending value on this receiver without blocking. /// /// This method will never block the caller in order to wait for data to /// become available. Instead, this will always return immediately with /// a possible option of pending data on the channel. /// /// This is useful for a flavor of "optimistic check" before deciding to /// block on a receiver. /// /// Compared with recv, this function has two failure cases instead of /// one (one for disconnection, one for an empty buffer). pub fn try_recv(&mut self) -> Result<T, TryRecvError> { self.chan.try_recv() } /// Closes the receiving half of a channel, without dropping it. /// /// This prevents any further messages from being sent on the channel while /// still enabling the receiver to drain messages that are buffered. pub fn close(&mut self) { self.chan.close(); } } #[cfg(feature = "stream")] impl<T> crate::stream::Stream for UnboundedReceiver<T> { type Item = T; fn poll_next(mut self: std::pin::Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<T>> { self.poll_recv(cx) } } impl<T> UnboundedSender<T> { pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> { UnboundedSender { chan } } /// Attempts to send a message on this `UnboundedSender` without blocking. /// /// This method is not marked async because sending a message to an unbounded channel /// never requires any form of waiting. Because of this, the `send` method can be /// used in both synchronous and asynchronous code without problems. /// /// If the receive half of the channel is closed, either due to [`close`] /// being called or the [`UnboundedReceiver`] having been dropped, this /// function returns an error. The error includes the value passed to `send`. /// /// [`close`]: UnboundedReceiver::close /// [`UnboundedReceiver`]: UnboundedReceiver pub fn send(&self, message: T) -> Result<(), SendError<T>> { if !self.inc_num_messages() { return Err(SendError(message)); } self.chan.send(message); Ok(()) } fn inc_num_messages(&self) -> bool { use std::process; use std::sync::atomic::Ordering::{AcqRel, Acquire}; let mut curr = self.chan.semaphore().load(Acquire); loop { if curr & 1 == 1 { return false; } if curr == usize::MAX ^ 1 { // Overflowed the ref count. There is no safe way to recover, so // abort the process. In practice, this should never happen. process::abort() } match self .chan .semaphore() .compare_exchange(curr, curr + 2, AcqRel, Acquire) { Ok(_) => return true, Err(actual) => { curr = actual; } } } } /// Completes when the receiver has dropped. /// /// This allows the producers to get notified when interest in the produced /// values is canceled and immediately stop doing work. /// /// # Examples /// /// ``` /// use tokio::sync::mpsc; /// /// #[tokio::main] /// async fn main() { /// let (tx1, rx) = mpsc::unbounded_channel::<()>(); /// let tx2 = tx1.clone(); /// let tx3 = tx1.clone(); /// let tx4 = tx1.clone(); /// let tx5 = tx1.clone(); /// tokio::spawn(async move { /// drop(rx); /// }); /// /// futures::join!( /// tx1.closed(), /// tx2.closed(), /// tx3.closed(), /// tx4.closed(), /// tx5.closed() /// ); //// println!("Receiver dropped"); /// } /// ``` pub async fn closed(&self) { self.chan.closed().await } /// Checks if the channel has been closed. This happens when the /// [`UnboundedReceiver`] is dropped, or when the /// [`UnboundedReceiver::close`] method is called. /// /// [`UnboundedReceiver`]: crate::sync::mpsc::UnboundedReceiver /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close /// /// ``` /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>(); /// assert!(!tx.is_closed()); /// /// let tx2 = tx.clone(); /// assert!(!tx2.is_closed()); /// /// drop(rx); /// assert!(tx.is_closed()); /// assert!(tx2.is_closed()); /// ``` pub fn is_closed(&self) -> bool { self.chan.is_closed() } }