1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))] //! # Implementation Details //! //! The semaphore is implemented using an intrusive linked list of waiters. An //! atomic counter tracks the number of available permits. If the semaphore does //! not contain the required number of permits, the task attempting to acquire //! permits places its waker at the end of a queue. When new permits are made //! available (such as by releasing an initial acquisition), they are assigned //! to the task at the front of the queue, waking that task if its requested //! number of permits is met. //! //! Because waiters are enqueued at the back of the linked list and dequeued //! from the front, the semaphore is fair. Tasks trying to acquire large numbers //! of permits at a time will always be woken eventually, even if many other //! tasks are acquiring smaller numbers of permits. This means that in a //! use-case like tokio's read-write lock, writers will not be starved by //! readers. use crate::loom::cell::UnsafeCell; use crate::loom::sync::atomic::AtomicUsize; use crate::loom::sync::{Mutex, MutexGuard}; use crate::util::linked_list::{self, LinkedList}; use std::future::Future; use std::marker::PhantomPinned; use std::pin::Pin; use std::ptr::NonNull; use std::sync::atomic::Ordering::*; use std::task::Poll::*; use std::task::{Context, Poll, Waker}; use std::{cmp, fmt}; /// An asynchronous counting semaphore which permits waiting on multiple permits at once. pub(crate) struct Semaphore { waiters: Mutex<Waitlist>, /// The current number of available permits in the semaphore. permits: AtomicUsize, } struct Waitlist { queue: LinkedList<Waiter, <Waiter as linked_list::Link>::Target>, closed: bool, } /// Error returned by `Semaphore::try_acquire`. #[derive(Debug)] pub(crate) enum TryAcquireError { Closed, NoPermits, } /// Error returned by `Semaphore::acquire`. #[derive(Debug)] pub(crate) struct AcquireError(()); pub(crate) struct Acquire<'a> { node: Waiter, semaphore: &'a Semaphore, num_permits: u32, queued: bool, } /// An entry in the wait queue. struct Waiter { /// The current state of the waiter. /// /// This is either the number of remaining permits required by /// the waiter, or a flag indicating that the waiter is not yet queued. state: AtomicUsize, /// The waker to notify the task awaiting permits. /// /// # Safety /// /// This may only be accessed while the wait queue is locked. waker: UnsafeCell<Option<Waker>>, /// Intrusive linked-list pointers. /// /// # Safety /// /// This may only be accessed while the wait queue is locked. /// /// TODO: Ideally, we would be able to use loom to enforce that /// this isn't accessed concurrently. However, it is difficult to /// use a `UnsafeCell` here, since the `Link` trait requires _returning_ /// references to `Pointers`, and `UnsafeCell` requires that checked access /// take place inside a closure. We should consider changing `Pointers` to /// use `UnsafeCell` internally. pointers: linked_list::Pointers<Waiter>, /// Should not be `Unpin`. _p: PhantomPinned, } impl Semaphore { /// The maximum number of permits which a semaphore can hold. /// /// Note that this reserves three bits of flags in the permit counter, but /// we only actually use one of them. However, the previous semaphore /// implementation used three bits, so we will continue to reserve them to /// avoid a breaking change if additional flags need to be added in the /// future. pub(crate) const MAX_PERMITS: usize = std::usize::MAX >> 3; const CLOSED: usize = 1; // The least-significant bit in the number of permits is reserved to use // as a flag indicating that the semaphore has been closed. Consequently // PERMIT_SHIFT is used to leave that bit for that purpose. const PERMIT_SHIFT: usize = 1; /// Creates a new semaphore with the initial number of permits /// /// Maximum number of permits on 32-bit platforms is `1<<29`. pub(crate) fn new(permits: usize) -> Self { assert!( permits <= Self::MAX_PERMITS, "a semaphore may not have more than MAX_PERMITS permits ({})", Self::MAX_PERMITS ); Self { permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT), waiters: Mutex::new(Waitlist { queue: LinkedList::new(), closed: false, }), } } /// Creates a new semaphore with the initial number of permits /// /// Maximum number of permits on 32-bit platforms is `1<<29`. /// /// If the specified number of permits exceeds the maximum permit amount /// Then the value will get clamped to the maximum number of permits. #[cfg(all(feature = "parking_lot", not(all(loom, test))))] pub(crate) const fn const_new(mut permits: usize) -> Self { // NOTE: assertions and by extension panics are still being worked on: https://github.com/rust-lang/rust/issues/74925 // currently we just clamp the permit count when it exceeds the max permits &= Self::MAX_PERMITS; Self { permits: AtomicUsize::new(permits << Self::PERMIT_SHIFT), waiters: Mutex::const_new(Waitlist { queue: LinkedList::new(), closed: false, }), } } /// Returns the current number of available permits pub(crate) fn available_permits(&self) -> usize { self.permits.load(Acquire) >> Self::PERMIT_SHIFT } /// Adds `added` new permits to the semaphore. /// /// The maximum number of permits is `usize::MAX >> 3`, and this function will panic if the limit is exceeded. pub(crate) fn release(&self, added: usize) { if added == 0 { return; } // Assign permits to the wait queue self.add_permits_locked(added, self.waiters.lock()); } /// Closes the semaphore. This prevents the semaphore from issuing new /// permits and notifies all pending waiters. // This will be used once the bounded MPSC is updated to use the new // semaphore implementation. pub(crate) fn close(&self) { let mut waiters = self.waiters.lock(); // If the semaphore's permits counter has enough permits for an // unqueued waiter to acquire all the permits it needs immediately, // it won't touch the wait list. Therefore, we have to set a bit on // the permit counter as well. However, we must do this while // holding the lock --- otherwise, if we set the bit and then wait // to acquire the lock we'll enter an inconsistent state where the // permit counter is closed, but the wait list is not. self.permits.fetch_or(Self::CLOSED, Release); waiters.closed = true; while let Some(mut waiter) = waiters.queue.pop_back() { let waker = unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) }; if let Some(waker) = waker { waker.wake(); } } } /// Returns true if the semaphore is closed pub(crate) fn is_closed(&self) -> bool { self.permits.load(Acquire) & Self::CLOSED == Self::CLOSED } pub(crate) fn try_acquire(&self, num_permits: u32) -> Result<(), TryAcquireError> { assert!( num_permits as usize <= Self::MAX_PERMITS, "a semaphore may not have more than MAX_PERMITS permits ({})", Self::MAX_PERMITS ); let num_permits = (num_permits as usize) << Self::PERMIT_SHIFT; let mut curr = self.permits.load(Acquire); loop { // Has the semaphore closed? if curr & Self::CLOSED == Self::CLOSED { return Err(TryAcquireError::Closed); } // Are there enough permits remaining? if curr < num_permits { return Err(TryAcquireError::NoPermits); } let next = curr - num_permits; match self.permits.compare_exchange(curr, next, AcqRel, Acquire) { Ok(_) => return Ok(()), Err(actual) => curr = actual, } } } pub(crate) fn acquire(&self, num_permits: u32) -> Acquire<'_> { Acquire::new(self, num_permits) } /// Release `rem` permits to the semaphore's wait list, starting from the /// end of the queue. /// /// If `rem` exceeds the number of permits needed by the wait list, the /// remainder are assigned back to the semaphore. fn add_permits_locked(&self, mut rem: usize, waiters: MutexGuard<'_, Waitlist>) { let mut wakers: [Option<Waker>; 8] = Default::default(); let mut lock = Some(waiters); let mut is_empty = false; while rem > 0 { let mut waiters = lock.take().unwrap_or_else(|| self.waiters.lock()); 'inner: for slot in &mut wakers[..] { // Was the waiter assigned enough permits to wake it? match waiters.queue.last() { Some(waiter) => { if !waiter.assign_permits(&mut rem) { break 'inner; } } None => { is_empty = true; // If we assigned permits to all the waiters in the queue, and there are // still permits left over, assign them back to the semaphore. break 'inner; } }; let mut waiter = waiters.queue.pop_back().unwrap(); *slot = unsafe { waiter.as_mut().waker.with_mut(|waker| (*waker).take()) }; } if rem > 0 && is_empty { let permits = rem; assert!( permits <= Self::MAX_PERMITS, "cannot add more than MAX_PERMITS permits ({})", Self::MAX_PERMITS ); let prev = self.permits.fetch_add(rem << Self::PERMIT_SHIFT, Release); assert!( prev + permits <= Self::MAX_PERMITS, "number of added permits ({}) would overflow MAX_PERMITS ({})", rem, Self::MAX_PERMITS ); rem = 0; } drop(waiters); // release the lock wakers .iter_mut() .filter_map(Option::take) .for_each(Waker::wake); } assert_eq!(rem, 0); } fn poll_acquire( &self, cx: &mut Context<'_>, num_permits: u32, node: Pin<&mut Waiter>, queued: bool, ) -> Poll<Result<(), AcquireError>> { let mut acquired = 0; let needed = if queued { node.state.load(Acquire) << Self::PERMIT_SHIFT } else { (num_permits as usize) << Self::PERMIT_SHIFT }; let mut lock = None; // First, try to take the requested number of permits from the // semaphore. let mut curr = self.permits.load(Acquire); let mut waiters = loop { // Has the semaphore closed? if curr & Self::CLOSED > 0 { return Ready(Err(AcquireError::closed())); } let mut remaining = 0; let total = curr .checked_add(acquired) .expect("number of permits must not overflow"); let (next, acq) = if total >= needed { let next = curr - (needed - acquired); (next, needed >> Self::PERMIT_SHIFT) } else { remaining = (needed - acquired) - curr; (0, curr >> Self::PERMIT_SHIFT) }; if remaining > 0 && lock.is_none() { // No permits were immediately available, so this permit will // (probably) need to wait. We'll need to acquire a lock on the // wait queue before continuing. We need to do this _before_ the // CAS that sets the new value of the semaphore's `permits` // counter. Otherwise, if we subtract the permits and then // acquire the lock, we might miss additional permits being // added while waiting for the lock. lock = Some(self.waiters.lock()); } match self.permits.compare_exchange(curr, next, AcqRel, Acquire) { Ok(_) => { acquired += acq; if remaining == 0 { if !queued { return Ready(Ok(())); } else if lock.is_none() { break self.waiters.lock(); } } break lock.expect("lock must be acquired before waiting"); } Err(actual) => curr = actual, } }; if waiters.closed { return Ready(Err(AcquireError::closed())); } if node.assign_permits(&mut acquired) { self.add_permits_locked(acquired, waiters); return Ready(Ok(())); } assert_eq!(acquired, 0); // Otherwise, register the waker & enqueue the node. node.waker.with_mut(|waker| { // Safety: the wait list is locked, so we may modify the waker. let waker = unsafe { &mut *waker }; // Do we need to register the new waker? if waker .as_ref() .map(|waker| !waker.will_wake(cx.waker())) .unwrap_or(true) { *waker = Some(cx.waker().clone()); } }); // If the waiter is not already in the wait queue, enqueue it. if !queued { let node = unsafe { let node = Pin::into_inner_unchecked(node) as *mut _; NonNull::new_unchecked(node) }; waiters.queue.push_front(node); } Pending } } impl fmt::Debug for Semaphore { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.debug_struct("Semaphore") .field("permits", &self.available_permits()) .finish() } } impl Waiter { fn new(num_permits: u32) -> Self { Waiter { waker: UnsafeCell::new(None), state: AtomicUsize::new(num_permits as usize), pointers: linked_list::Pointers::new(), _p: PhantomPinned, } } /// Assign permits to the waiter. /// /// Returns `true` if the waiter should be removed from the queue fn assign_permits(&self, n: &mut usize) -> bool { let mut curr = self.state.load(Acquire); loop { let assign = cmp::min(curr, *n); let next = curr - assign; match self.state.compare_exchange(curr, next, AcqRel, Acquire) { Ok(_) => { *n -= assign; return next == 0; } Err(actual) => curr = actual, } } } } impl Future for Acquire<'_> { type Output = Result<(), AcquireError>; fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { // First, ensure the current task has enough budget to proceed. let coop = ready!(crate::coop::poll_proceed(cx)); let (node, semaphore, needed, queued) = self.project(); match semaphore.poll_acquire(cx, needed, node, *queued) { Pending => { *queued = true; Pending } Ready(r) => { coop.made_progress(); r?; *queued = false; Ready(Ok(())) } } } } impl<'a> Acquire<'a> { fn new(semaphore: &'a Semaphore, num_permits: u32) -> Self { Self { node: Waiter::new(num_permits), semaphore, num_permits, queued: false, } } fn project(self: Pin<&mut Self>) -> (Pin<&mut Waiter>, &Semaphore, u32, &mut bool) { fn is_unpin<T: Unpin>() {} unsafe { // Safety: all fields other than `node` are `Unpin` is_unpin::<&Semaphore>(); is_unpin::<&mut bool>(); is_unpin::<u32>(); let this = self.get_unchecked_mut(); ( Pin::new_unchecked(&mut this.node), &this.semaphore, this.num_permits, &mut this.queued, ) } } } impl Drop for Acquire<'_> { fn drop(&mut self) { // If the future is completed, there is no node in the wait list, so we // can skip acquiring the lock. if !self.queued { return; } // This is where we ensure safety. The future is being dropped, // which means we must ensure that the waiter entry is no longer stored // in the linked list. let mut waiters = self.semaphore.waiters.lock(); // remove the entry from the list let node = NonNull::from(&mut self.node); // Safety: we have locked the wait list. unsafe { waiters.queue.remove(node) }; let acquired_permits = self.num_permits as usize - self.node.state.load(Acquire); if acquired_permits > 0 { self.semaphore.add_permits_locked(acquired_permits, waiters); } } } // Safety: the `Acquire` future is not `Sync` automatically because it contains // a `Waiter`, which, in turn, contains an `UnsafeCell`. However, the // `UnsafeCell` is only accessed when the future is borrowed mutably (either in // `poll` or in `drop`). Therefore, it is safe (although not particularly // _useful_) for the future to be borrowed immutably across threads. unsafe impl Sync for Acquire<'_> {} // ===== impl AcquireError ==== impl AcquireError { fn closed() -> AcquireError { AcquireError(()) } } impl fmt::Display for AcquireError { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { write!(fmt, "semaphore closed") } } impl std::error::Error for AcquireError {} // ===== impl TryAcquireError ===== impl TryAcquireError { /// Returns `true` if the error was caused by a closed semaphore. #[allow(dead_code)] // may be used later! pub(crate) fn is_closed(&self) -> bool { matches!(self, TryAcquireError::Closed) } /// Returns `true` if the error was caused by calling `try_acquire` on a /// semaphore with no available permits. #[allow(dead_code)] // may be used later! pub(crate) fn is_no_permits(&self) -> bool { matches!(self, TryAcquireError::NoPermits) } } impl fmt::Display for TryAcquireError { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { match self { TryAcquireError::Closed => write!(fmt, "semaphore closed"), TryAcquireError::NoPermits => write!(fmt, "no permits available"), } } } impl std::error::Error for TryAcquireError {} /// # Safety /// /// `Waiter` is forced to be !Unpin. unsafe impl linked_list::Link for Waiter { // XXX: ideally, we would be able to use `Pin` here, to enforce the // invariant that list entries may not move while in the list. However, we // can't do this currently, as using `Pin<&'a mut Waiter>` as the `Handle` // type would require `Semaphore` to be generic over a lifetime. We can't // use `Pin<*mut Waiter>`, as raw pointers are `Unpin` regardless of whether // or not they dereference to an `!Unpin` target. type Handle = NonNull<Waiter>; type Target = Waiter; fn as_raw(handle: &Self::Handle) -> NonNull<Waiter> { *handle } unsafe fn from_raw(ptr: NonNull<Waiter>) -> NonNull<Waiter> { ptr } unsafe fn pointers(mut target: NonNull<Waiter>) -> NonNull<linked_list::Pointers<Waiter>> { NonNull::from(&mut target.as_mut().pointers) } }