1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
use crate::future::poll_fn;
use crate::io::{AsyncRead, AsyncWrite, Interest, PollEvented, ReadBuf, Ready};
use crate::net::tcp::split::{split, ReadHalf, WriteHalf};
use crate::net::tcp::split_owned::{split_owned, OwnedReadHalf, OwnedWriteHalf};
use crate::net::{to_socket_addrs, ToSocketAddrs};

use std::convert::TryFrom;
use std::fmt;
use std::io;
use std::net::{Shutdown, SocketAddr};
#[cfg(windows)]
use std::os::windows::io::{AsRawSocket, FromRawSocket, IntoRawSocket};

#[cfg(unix)]
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd};
use std::pin::Pin;
use std::task::{Context, Poll};
use std::time::Duration;

cfg_net! {
    /// A TCP stream between a local and a remote socket.
    ///
    /// A TCP stream can either be created by connecting to an endpoint, via the
    /// [`connect`] method, or by [accepting] a connection from a [listener].
    ///
    /// Reading and writing to a `TcpStream` is usually done using the
    /// convenience methods found on the [`AsyncReadExt`] and [`AsyncWriteExt`]
    /// traits. Examples import these traits through [the prelude].
    ///
    /// [`connect`]: method@TcpStream::connect
    /// [accepting]: method@crate::net::TcpListener::accept
    /// [listener]: struct@crate::net::TcpListener
    /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
    /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
    /// [the prelude]: crate::prelude
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use tokio::prelude::*;
    /// use std::error::Error;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     // Write some data.
    ///     stream.write_all(b"hello world!").await?;
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// The [`write_all`] method is defined on the [`AsyncWriteExt`] trait.
    ///
    /// [`write_all`]: fn@crate::io::AsyncWriteExt::write_all
    /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
    pub struct TcpStream {
        io: PollEvented<mio::net::TcpStream>,
    }
}

impl TcpStream {
    /// Opens a TCP connection to a remote host.
    ///
    /// `addr` is an address of the remote host. Anything which implements the
    /// [`ToSocketAddrs`] trait can be supplied as the address. Note that
    /// strings only implement this trait when the **`net`** feature is enabled,
    /// as strings may contain domain names that need to be resolved.
    ///
    /// If `addr` yields multiple addresses, connect will be attempted with each
    /// of the addresses until a connection is successful. If none of the
    /// addresses result in a successful connection, the error returned from the
    /// last connection attempt (the last address) is returned.
    ///
    /// [`ToSocketAddrs`]: trait@crate::net::ToSocketAddrs
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use tokio::prelude::*;
    /// use std::error::Error;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     // Write some data.
    ///     stream.write_all(b"hello world!").await?;
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// The [`write_all`] method is defined on the [`AsyncWriteExt`] trait.
    ///
    /// [`write_all`]: fn@crate::io::AsyncWriteExt::write_all
    /// [`AsyncWriteExt`]: trait@crate::io::AsyncWriteExt
    pub async fn connect<A: ToSocketAddrs>(addr: A) -> io::Result<TcpStream> {
        let addrs = to_socket_addrs(addr).await?;

        let mut last_err = None;

        for addr in addrs {
            match TcpStream::connect_addr(addr).await {
                Ok(stream) => return Ok(stream),
                Err(e) => last_err = Some(e),
            }
        }

        Err(last_err.unwrap_or_else(|| {
            io::Error::new(
                io::ErrorKind::InvalidInput,
                "could not resolve to any address",
            )
        }))
    }

    /// Establishes a connection to the specified `addr`.
    async fn connect_addr(addr: SocketAddr) -> io::Result<TcpStream> {
        let sys = mio::net::TcpStream::connect(addr)?;
        TcpStream::connect_mio(sys).await
    }

    pub(crate) async fn connect_mio(sys: mio::net::TcpStream) -> io::Result<TcpStream> {
        let stream = TcpStream::new(sys)?;

        // Once we've connected, wait for the stream to be writable as
        // that's when the actual connection has been initiated. Once we're
        // writable we check for `take_socket_error` to see if the connect
        // actually hit an error or not.
        //
        // If all that succeeded then we ship everything on up.
        poll_fn(|cx| stream.io.registration().poll_write_ready(cx)).await?;

        if let Some(e) = stream.io.take_error()? {
            return Err(e);
        }

        Ok(stream)
    }

    pub(crate) fn new(connected: mio::net::TcpStream) -> io::Result<TcpStream> {
        let io = PollEvented::new(connected)?;
        Ok(TcpStream { io })
    }

    /// Creates new `TcpStream` from a `std::net::TcpStream`.
    ///
    /// This function is intended to be used to wrap a TCP stream from the
    /// standard library in the Tokio equivalent. The conversion assumes nothing
    /// about the underlying stream; it is left up to the user to set it in
    /// non-blocking mode.
    ///
    /// # Examples
    ///
    /// ```rust,no_run
    /// use std::error::Error;
    /// use tokio::net::TcpStream;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let std_stream = std::net::TcpStream::connect("127.0.0.1:34254")?;
    ///     std_stream.set_nonblocking(true)?;
    ///     let stream = TcpStream::from_std(std_stream)?;
    ///     Ok(())
    /// }
    /// ```
    ///
    /// # Panics
    ///
    /// This function panics if thread-local runtime is not set.
    ///
    /// The runtime is usually set implicitly when this function is called
    /// from a future driven by a tokio runtime, otherwise runtime can be set
    /// explicitly with [`Runtime::enter`](crate::runtime::Runtime::enter) function.
    pub fn from_std(stream: std::net::TcpStream) -> io::Result<TcpStream> {
        let io = mio::net::TcpStream::from_std(stream);
        let io = PollEvented::new(io)?;
        Ok(TcpStream { io })
    }

    /// Turn a [`tokio::net::TcpStream`] into a [`std::net::TcpStream`].
    ///
    /// The returned [`std::net::TcpStream`] will have `nonblocking mode` set as `true`.
    /// Use [`set_nonblocking`] to change the blocking mode if needed.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::error::Error;
    /// use std::io::Read;
    /// use tokio::net::TcpListener;
    /// # use tokio::net::TcpStream;
    /// # use tokio::io::AsyncWriteExt;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let mut data = [0u8; 12];
    ///     let listener = TcpListener::bind("127.0.0.1:34254").await?;
    /// #   let handle = tokio::spawn(async {
    /// #       let mut stream: TcpStream = TcpStream::connect("127.0.0.1:34254").await.unwrap();
    /// #       stream.write(b"Hello world!").await.unwrap();
    /// #   });
    ///     let (tokio_tcp_stream, _) = listener.accept().await?;
    ///     let mut std_tcp_stream = tokio_tcp_stream.into_std()?;
    /// #   handle.await.expect("The task being joined has panicked");
    ///     std_tcp_stream.set_nonblocking(false)?;
    ///     std_tcp_stream.read_exact(&mut data)?;
    /// #   assert_eq!(b"Hello world!", &data);
    ///     Ok(())
    /// }
    /// ```
    /// [`tokio::net::TcpStream`]: TcpStream
    /// [`std::net::TcpStream`]: std::net::TcpStream
    /// [`set_nonblocking`]: fn@std::net::TcpStream::set_nonblocking
    pub fn into_std(self) -> io::Result<std::net::TcpStream> {
        #[cfg(unix)]
        {
            self.io
                .into_inner()
                .map(|io| io.into_raw_fd())
                .map(|raw_fd| unsafe { std::net::TcpStream::from_raw_fd(raw_fd) })
        }

        #[cfg(windows)]
        {
            self.io
                .into_inner()
                .map(|io| io.into_raw_socket())
                .map(|raw_socket| unsafe { std::net::TcpStream::from_raw_socket(raw_socket) })
        }
    }

    /// Returns the local address that this stream is bound to.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", stream.local_addr()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn local_addr(&self) -> io::Result<SocketAddr> {
        self.io.local_addr()
    }

    /// Returns the remote address that this stream is connected to.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", stream.peer_addr()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn peer_addr(&self) -> io::Result<SocketAddr> {
        self.io.peer_addr()
    }

    /// Attempts to receive data on the socket, without removing that data from
    /// the queue, registering the current task for wakeup if data is not yet
    /// available.
    ///
    /// # Return value
    ///
    /// The function returns:
    ///
    /// * `Poll::Pending` if data is not yet available.
    /// * `Poll::Ready(Ok(n))` if data is available. `n` is the number of bytes peeked.
    /// * `Poll::Ready(Err(e))` if an error is encountered.
    ///
    /// # Errors
    ///
    /// This function may encounter any standard I/O error except `WouldBlock`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::io;
    /// use tokio::net::TcpStream;
    ///
    /// use futures::future::poll_fn;
    ///
    /// #[tokio::main]
    /// async fn main() -> io::Result<()> {
    ///     let stream = TcpStream::connect("127.0.0.1:8000").await?;
    ///     let mut buf = [0; 10];
    ///
    ///     poll_fn(|cx| {
    ///         stream.poll_peek(cx, &mut buf)
    ///     }).await?;
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn poll_peek(&self, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<io::Result<usize>> {
        loop {
            let ev = ready!(self.io.registration().poll_read_ready(cx))?;

            match self.io.peek(buf) {
                Ok(ret) => return Poll::Ready(Ok(ret)),
                Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                    self.io.registration().clear_readiness(ev);
                }
                Err(e) => return Poll::Ready(Err(e)),
            }
        }
    }

    /// Wait for any of the requested ready states.
    ///
    /// This function is usually paired with `try_read()` or `try_write()`. It
    /// can be used to concurrently read / write to the same socket on a single
    /// task without splitting the socket.
    ///
    /// # Examples
    ///
    /// Concurrently read and write to the stream on the same task without
    /// splitting.
    ///
    /// ```no_run
    /// use tokio::io::Interest;
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     loop {
    ///         let ready = stream.ready(Interest::READABLE | Interest::WRITABLE).await?;
    ///
    ///         if ready.is_readable() {
    ///             // The buffer is **not** included in the async task and will only exist
    ///             // on the stack.
    ///             let mut data = [0; 1024];
    ///             let n = stream.try_read(&mut data[..]).unwrap();
    ///
    ///             println!("GOT {:?}", &data[..n]);
    ///         }
    ///
    ///         if ready.is_writable() {
    ///             // Write some data
    ///             stream.try_write(b"hello world").unwrap();
    ///         }
    ///     }
    /// }
    /// ```
    pub async fn ready(&self, interest: Interest) -> io::Result<Ready> {
        let event = self.io.registration().readiness(interest).await?;
        Ok(event.ready)
    }

    /// Wait for the socket to become readable.
    ///
    /// This function is equivalent to `ready(Interest::READABLE)` is usually
    /// paired with `try_read()`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     let mut msg = vec![0; 1024];
    ///
    ///     loop {
    ///         // Wait for the socket to be readable
    ///         stream.readable().await?;
    ///
    ///         // Try to read data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match stream.try_read(&mut msg) {
    ///             Ok(n) => {
    ///                 msg.truncate(n);
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e.into());
    ///             }
    ///         }
    ///     }
    ///
    ///     println!("GOT = {:?}", msg);
    ///     Ok(())
    /// }
    /// ```
    pub async fn readable(&self) -> io::Result<()> {
        self.ready(Interest::READABLE).await?;
        Ok(())
    }

    /// Polls for read readiness.
    ///
    /// This function is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// [`readable`]: method@Self::readable
    pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.io.registration().poll_read_ready(cx).map_ok(|_| ())
    }

    /// Try to read data from the stream into the provided buffer, returning how
    /// many bytes were read.
    ///
    /// Receives any pending data from the socket but does not wait for new data
    /// to arrive. On success, returns the number of bytes read. Because
    /// `try_read()` is non-blocking, the buffer does not have to be stored by
    /// the async task and can exist entirely on the stack.
    ///
    /// Usually, [`readable()`] or [`ready()`] is used with this function.
    ///
    /// [`readable()`]: TcpStream::readable()
    /// [`ready()`]: TcpStream::ready()
    ///
    /// # Return
    ///
    /// If data is successfully read, `Ok(n)` is returned, where `n` is the
    /// number of bytes read. `Ok(n)` indicates the stream's read half is closed
    /// and will no longer yield data. If the stream is not ready to read data
    /// `Err(io::ErrorKind::WouldBlock)` is returned.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be readable
    ///         stream.readable().await?;
    ///
    ///         // Creating the buffer **after** the `await` prevents it from
    ///         // being stored in the async task.
    ///         let mut buf = [0; 4096];
    ///
    ///         // Try to read data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match stream.try_read(&mut buf) {
    ///             Ok(0) => break,
    ///             Ok(n) => {
    ///                 println!("read {} bytes", n);
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e.into());
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_read(&self, buf: &mut [u8]) -> io::Result<usize> {
        use std::io::Read;

        self.io
            .registration()
            .try_io(Interest::READABLE, || (&*self.io).read(buf))
    }

    /// Wait for the socket to become writable.
    ///
    /// This function is equivalent to `ready(Interest::WRITABLE)` is usually
    /// paired with `try_write()`.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be writable
    ///         stream.writable().await?;
    ///
    ///         // Try to write data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match stream.try_write(b"hello world") {
    ///             Ok(n) => {
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e.into());
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub async fn writable(&self) -> io::Result<()> {
        self.ready(Interest::WRITABLE).await?;
        Ok(())
    }

    /// Polls for write readiness.
    ///
    /// This function is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// [`writable`]: method@Self::writable
    pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.io.registration().poll_write_ready(cx).map_ok(|_| ())
    }

    /// Try to write a buffer to the stream, returning how many bytes were
    /// written.
    ///
    /// The function will attempt to write the entire contents of `buf`, but
    /// only part of the buffer may be written.
    ///
    /// This function is usually paired with `writable()`.
    ///
    /// # Return
    ///
    /// If data is successfully written, `Ok(n)` is returned, where `n` is the
    /// number of bytes written. If the stream is not ready to write data,
    /// `Err(io::ErrorKind::WouldBlock)` is returned.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    /// use std::io;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     loop {
    ///         // Wait for the socket to be writable
    ///         stream.writable().await?;
    ///
    ///         // Try to write data, this may still fail with `WouldBlock`
    ///         // if the readiness event is a false positive.
    ///         match stream.try_write(b"hello world") {
    ///             Ok(n) => {
    ///                 break;
    ///             }
    ///             Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
    ///                 continue;
    ///             }
    ///             Err(e) => {
    ///                 return Err(e.into());
    ///             }
    ///         }
    ///     }
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn try_write(&self, buf: &[u8]) -> io::Result<usize> {
        use std::io::Write;

        self.io
            .registration()
            .try_io(Interest::WRITABLE, || (&*self.io).write(buf))
    }

    /// Receives data on the socket from the remote address to which it is
    /// connected, without removing that data from the queue. On success,
    /// returns the number of bytes peeked.
    ///
    /// Successive calls return the same data. This is accomplished by passing
    /// `MSG_PEEK` as a flag to the underlying recv system call.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use tokio::prelude::*;
    /// use std::error::Error;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let mut stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     let mut b1 = [0; 10];
    ///     let mut b2 = [0; 10];
    ///
    ///     // Peek at the data
    ///     let n = stream.peek(&mut b1).await?;
    ///
    ///     // Read the data
    ///     assert_eq!(n, stream.read(&mut b2[..n]).await?);
    ///     assert_eq!(&b1[..n], &b2[..n]);
    ///
    ///     Ok(())
    /// }
    /// ```
    ///
    /// The [`read`] method is defined on the [`AsyncReadExt`] trait.
    ///
    /// [`read`]: fn@crate::io::AsyncReadExt::read
    /// [`AsyncReadExt`]: trait@crate::io::AsyncReadExt
    pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
        self.io
            .registration()
            .async_io(Interest::READABLE, || self.io.peek(buf))
            .await
    }

    /// Shuts down the read, write, or both halves of this connection.
    ///
    /// This function will cause all pending and future I/O on the specified
    /// portions to return immediately with an appropriate value (see the
    /// documentation of `Shutdown`).
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    /// use std::error::Error;
    /// use std::net::Shutdown;
    ///
    /// #[tokio::main]
    /// async fn main() -> Result<(), Box<dyn Error>> {
    ///     // Connect to a peer
    ///     let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    ///     // Shutdown the stream
    ///     stream.shutdown(Shutdown::Write)?;
    ///
    ///     Ok(())
    /// }
    /// ```
    pub fn shutdown(&self, how: Shutdown) -> io::Result<()> {
        self.io.shutdown(how)
    }

    /// Gets the value of the `TCP_NODELAY` option on this socket.
    ///
    /// For more information about this option, see [`set_nodelay`].
    ///
    /// [`set_nodelay`]: TcpStream::set_nodelay
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", stream.nodelay()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn nodelay(&self) -> io::Result<bool> {
        self.io.nodelay()
    }

    /// Sets the value of the `TCP_NODELAY` option on this socket.
    ///
    /// If set, this option disables the Nagle algorithm. This means that
    /// segments are always sent as soon as possible, even if there is only a
    /// small amount of data. When not set, data is buffered until there is a
    /// sufficient amount to send out, thereby avoiding the frequent sending of
    /// small packets.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// stream.set_nodelay(true)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn set_nodelay(&self, nodelay: bool) -> io::Result<()> {
        self.io.set_nodelay(nodelay)
    }

    /// Reads the linger duration for this socket by getting the `SO_LINGER`
    /// option.
    ///
    /// For more information about this option, see [`set_linger`].
    ///
    /// [`set_linger`]: TcpStream::set_linger
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", stream.linger()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn linger(&self) -> io::Result<Option<Duration>> {
        let mio_socket = std::mem::ManuallyDrop::new(self.to_mio());

        mio_socket.get_linger()
    }

    /// Sets the linger duration of this socket by setting the SO_LINGER option.
    ///
    /// This option controls the action taken when a stream has unsent messages and the stream is
    /// closed. If SO_LINGER is set, the system shall block the process until it can transmit the
    /// data or until the time expires.
    ///
    /// If SO_LINGER is not specified, and the stream is closed, the system handles the call in a
    /// way that allows the process to continue as quickly as possible.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// stream.set_linger(None)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn set_linger(&self, dur: Option<Duration>) -> io::Result<()> {
        let mio_socket = std::mem::ManuallyDrop::new(self.to_mio());

        mio_socket.set_linger(dur)
    }

    fn to_mio(&self) -> mio::net::TcpSocket {
        #[cfg(windows)]
        {
            unsafe { mio::net::TcpSocket::from_raw_socket(self.as_raw_socket()) }
        }

        #[cfg(unix)]
        {
            unsafe { mio::net::TcpSocket::from_raw_fd(self.as_raw_fd()) }
        }
    }

    /// Gets the value of the `IP_TTL` option for this socket.
    ///
    /// For more information about this option, see [`set_ttl`].
    ///
    /// [`set_ttl`]: TcpStream::set_ttl
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// println!("{:?}", stream.ttl()?);
    /// # Ok(())
    /// # }
    /// ```
    pub fn ttl(&self) -> io::Result<u32> {
        self.io.ttl()
    }

    /// Sets the value for the `IP_TTL` option on this socket.
    ///
    /// This value sets the time-to-live field that is used in every packet sent
    /// from this socket.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// use tokio::net::TcpStream;
    ///
    /// # async fn dox() -> Result<(), Box<dyn std::error::Error>> {
    /// let stream = TcpStream::connect("127.0.0.1:8080").await?;
    ///
    /// stream.set_ttl(123)?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn set_ttl(&self, ttl: u32) -> io::Result<()> {
        self.io.set_ttl(ttl)
    }

    // These lifetime markers also appear in the generated documentation, and make
    // it more clear that this is a *borrowed* split.
    #[allow(clippy::needless_lifetimes)]
    /// Splits a `TcpStream` into a read half and a write half, which can be used
    /// to read and write the stream concurrently.
    ///
    /// This method is more efficient than [`into_split`], but the halves cannot be
    /// moved into independently spawned tasks.
    ///
    /// [`into_split`]: TcpStream::into_split()
    pub fn split<'a>(&'a mut self) -> (ReadHalf<'a>, WriteHalf<'a>) {
        split(self)
    }

    /// Splits a `TcpStream` into a read half and a write half, which can be used
    /// to read and write the stream concurrently.
    ///
    /// Unlike [`split`], the owned halves can be moved to separate tasks, however
    /// this comes at the cost of a heap allocation.
    ///
    /// **Note:** Dropping the write half will shut down the write half of the TCP
    /// stream. This is equivalent to calling [`shutdown(Write)`] on the `TcpStream`.
    ///
    /// [`split`]: TcpStream::split()
    /// [`shutdown(Write)`]: fn@crate::net::TcpStream::shutdown
    pub fn into_split(self) -> (OwnedReadHalf, OwnedWriteHalf) {
        split_owned(self)
    }

    // == Poll IO functions that takes `&self` ==
    //
    // They are not public because (taken from the doc of `PollEvented`):
    //
    // While `PollEvented` is `Sync` (if the underlying I/O type is `Sync`), the
    // caller must ensure that there are at most two tasks that use a
    // `PollEvented` instance concurrently. One for reading and one for writing.
    // While violating this requirement is "safe" from a Rust memory model point
    // of view, it will result in unexpected behavior in the form of lost
    // notifications and tasks hanging.

    pub(crate) fn poll_read_priv(
        &self,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        // Safety: `TcpStream::read` correctly handles reads into uninitialized memory
        unsafe { self.io.poll_read(cx, buf) }
    }

    pub(super) fn poll_write_priv(
        &self,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        self.io.poll_write(cx, buf)
    }

    pub(super) fn poll_write_vectored_priv(
        &self,
        cx: &mut Context<'_>,
        bufs: &[io::IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        self.io.poll_write_vectored(cx, bufs)
    }
}

impl TryFrom<std::net::TcpStream> for TcpStream {
    type Error = io::Error;

    /// Consumes stream, returning the tokio I/O object.
    ///
    /// This is equivalent to
    /// [`TcpStream::from_std(stream)`](TcpStream::from_std).
    fn try_from(stream: std::net::TcpStream) -> Result<Self, Self::Error> {
        Self::from_std(stream)
    }
}

// ===== impl Read / Write =====

impl AsyncRead for TcpStream {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<io::Result<()>> {
        self.poll_read_priv(cx, buf)
    }
}

impl AsyncWrite for TcpStream {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        self.poll_write_priv(cx, buf)
    }

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[io::IoSlice<'_>],
    ) -> Poll<io::Result<usize>> {
        self.poll_write_vectored_priv(cx, bufs)
    }

    fn is_write_vectored(&self) -> bool {
        true
    }

    #[inline]
    fn poll_flush(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        // tcp flush is a no-op
        Poll::Ready(Ok(()))
    }

    fn poll_shutdown(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        self.shutdown(std::net::Shutdown::Write)?;
        Poll::Ready(Ok(()))
    }
}

impl fmt::Debug for TcpStream {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.io.fmt(f)
    }
}

#[cfg(unix)]
mod sys {
    use super::TcpStream;
    use std::os::unix::prelude::*;

    impl AsRawFd for TcpStream {
        fn as_raw_fd(&self) -> RawFd {
            self.io.as_raw_fd()
        }
    }
}

#[cfg(windows)]
mod sys {
    use super::TcpStream;
    use std::os::windows::prelude::*;

    impl AsRawSocket for TcpStream {
        fn as_raw_socket(&self) -> RawSocket {
            self.io.as_raw_socket()
        }
    }
}