1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
//! Stream utilities for Tokio. //! //! A `Stream` is an asynchronous sequence of values. It can be thought of as //! an asynchronous version of the standard library's `Iterator` trait. //! //! This module provides helpers to work with them. For examples of usage and a more in-depth //! description of streams you can also refer to the [streams //! tutorial](https://tokio.rs/tokio/tutorial/streams) on the tokio website. //! //! # Iterating over a Stream //! //! Due to similarities with the standard library's `Iterator` trait, some new //! users may assume that they can use `for in` syntax to iterate over a //! `Stream`, but this is unfortunately not possible. Instead, you can use a //! `while let` loop as follows: //! //! ```rust //! use tokio::stream::{self, StreamExt}; //! //! #[tokio::main] //! async fn main() { //! let mut stream = stream::iter(vec![0, 1, 2]); //! //! while let Some(value) = stream.next().await { //! println!("Got {}", value); //! } //! } //! ``` //! //! # Returning a Stream from a function //! //! A common way to stream values from a function is to pass in the sender //! half of a channel and use the receiver as the stream. This requires awaiting //! both futures to ensure progress is made. Another alternative is the //! [async-stream] crate, which contains macros that provide a `yield` keyword //! and allow you to return an `impl Stream`. //! //! [async-stream]: https://docs.rs/async-stream //! //! # Conversion to and from AsyncRead/AsyncWrite //! //! It is often desirable to convert a `Stream` into an [`AsyncRead`], //! especially when dealing with plaintext formats streamed over the network. //! The opposite conversion from an [`AsyncRead`] into a `Stream` is also //! another commonly required feature. To enable these conversions, //! [`tokio-util`] provides the [`StreamReader`] and [`ReaderStream`] //! types when the io feature is enabled. //! //! [tokio-util]: https://docs.rs/tokio-util/0.3/tokio_util/codec/index.html //! [`tokio::io`]: crate::io //! [`AsyncRead`]: crate::io::AsyncRead //! [`AsyncWrite`]: crate::io::AsyncWrite //! [`ReaderStream`]: https://docs.rs/tokio-util/0.4/tokio_util/io/struct.ReaderStream.html //! [`StreamReader`]: https://docs.rs/tokio-util/0.4/tokio_util/io/struct.StreamReader.html mod all; use all::AllFuture; mod any; use any::AnyFuture; mod chain; use chain::Chain; mod collect; use collect::Collect; pub use collect::FromStream; mod empty; pub use empty::{empty, Empty}; mod filter; use filter::Filter; mod filter_map; use filter_map::FilterMap; mod fold; use fold::FoldFuture; mod fuse; use fuse::Fuse; mod iter; pub use iter::{iter, Iter}; mod map; use map::Map; mod merge; use merge::Merge; mod next; use next::Next; mod once; pub use once::{once, Once}; mod pending; pub use pending::{pending, Pending}; mod stream_map; pub use stream_map::StreamMap; mod skip; use skip::Skip; mod skip_while; use skip_while::SkipWhile; mod try_next; use try_next::TryNext; mod take; use take::Take; mod take_while; use take_while::TakeWhile; cfg_time! { mod timeout; use timeout::Timeout; use crate::time::Duration; mod throttle; use crate::stream::throttle::{throttle, Throttle}; } #[doc(no_inline)] pub use futures_core::Stream; /// An extension trait for the [`Stream`] trait that provides a variety of /// convenient combinator functions. /// /// Be aware that the `Stream` trait in Tokio is a re-export of the trait found /// in the [futures] crate, however both Tokio and futures provide separate /// `StreamExt` utility traits, and some utilities are only available on one of /// these traits. Click [here][futures-StreamExt] to see the other `StreamExt` /// trait in the futures crate. /// /// If you need utilities from both `StreamExt` traits, you should prefer to /// import one of them, and use the other through the fully qualified call /// syntax. For example: /// ``` /// // import one of the traits: /// use futures::stream::StreamExt; /// # #[tokio::main(flavor = "current_thread")] /// # async fn main() { /// /// let a = tokio::stream::iter(vec![1, 3, 5]); /// let b = tokio::stream::iter(vec![2, 4, 6]); /// /// // use the fully qualified call syntax for the other trait: /// let merged = tokio::stream::StreamExt::merge(a, b); /// /// // use normal call notation for futures::stream::StreamExt::collect /// let output: Vec<_> = merged.collect().await; /// assert_eq!(output, vec![1, 2, 3, 4, 5, 6]); /// # } /// ``` /// /// [`Stream`]: crate::stream::Stream /// [futures]: https://docs.rs/futures /// [futures-StreamExt]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html pub trait StreamExt: Stream { /// Consumes and returns the next value in the stream or `None` if the /// stream is finished. /// /// Equivalent to: /// /// ```ignore /// async fn next(&mut self) -> Option<Self::Item>; /// ``` /// /// Note that because `next` doesn't take ownership over the stream, /// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a /// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can /// be done by boxing the stream using [`Box::pin`] or /// pinning it to the stack using the `pin_mut!` macro from the `pin_utils` /// crate. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..=3); /// /// assert_eq!(stream.next().await, Some(1)); /// assert_eq!(stream.next().await, Some(2)); /// assert_eq!(stream.next().await, Some(3)); /// assert_eq!(stream.next().await, None); /// # } /// ``` fn next(&mut self) -> Next<'_, Self> where Self: Unpin, { Next::new(self) } /// Consumes and returns the next item in the stream. If an error is /// encountered before the next item, the error is returned instead. /// /// Equivalent to: /// /// ```ignore /// async fn try_next(&mut self) -> Result<Option<T>, E>; /// ``` /// /// This is similar to the [`next`](StreamExt::next) combinator, /// but returns a [`Result<Option<T>, E>`](Result) rather than /// an [`Option<Result<T, E>>`](Option), making for easy use /// with the [`?`](std::ops::Try) operator. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(vec![Ok(1), Ok(2), Err("nope")]); /// /// assert_eq!(stream.try_next().await, Ok(Some(1))); /// assert_eq!(stream.try_next().await, Ok(Some(2))); /// assert_eq!(stream.try_next().await, Err("nope")); /// # } /// ``` fn try_next<T, E>(&mut self) -> TryNext<'_, Self> where Self: Stream<Item = Result<T, E>> + Unpin, { TryNext::new(self) } /// Maps this stream's items to a different type, returning a new stream of /// the resulting type. /// /// The provided closure is executed over all elements of this stream as /// they are made available. It is executed inline with calls to /// [`poll_next`](Stream::poll_next). /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to the existing `map` methods in the /// standard library. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=3); /// let mut stream = stream.map(|x| x + 3); /// /// assert_eq!(stream.next().await, Some(4)); /// assert_eq!(stream.next().await, Some(5)); /// assert_eq!(stream.next().await, Some(6)); /// # } /// ``` fn map<T, F>(self, f: F) -> Map<Self, F> where F: FnMut(Self::Item) -> T, Self: Sized, { Map::new(self, f) } /// Combine two streams into one by interleaving the output of both as it /// is produced. /// /// Values are produced from the merged stream in the order they arrive from /// the two source streams. If both source streams provide values /// simultaneously, the merge stream alternates between them. This provides /// some level of fairness. You should not chain calls to `merge`, as this /// will break the fairness of the merging. /// /// The merged stream completes once **both** source streams complete. When /// one source stream completes before the other, the merge stream /// exclusively polls the remaining stream. /// /// For merging multiple streams, consider using [`StreamMap`] instead. /// /// [`StreamMap`]: crate::stream::StreamMap /// /// # Examples /// /// ``` /// use tokio::stream::StreamExt; /// use tokio::sync::mpsc; /// use tokio::time; /// /// use std::time::Duration; /// /// # /* /// #[tokio::main] /// # */ /// # #[tokio::main(flavor = "current_thread")] /// async fn main() { /// # time::pause(); /// let (tx1, rx1) = mpsc::channel(10); /// let (tx2, rx2) = mpsc::channel(10); /// /// let mut rx = rx1.merge(rx2); /// /// tokio::spawn(async move { /// // Send some values immediately /// tx1.send(1).await.unwrap(); /// tx1.send(2).await.unwrap(); /// /// // Let the other task send values /// time::sleep(Duration::from_millis(20)).await; /// /// tx1.send(4).await.unwrap(); /// }); /// /// tokio::spawn(async move { /// // Wait for the first task to send values /// time::sleep(Duration::from_millis(5)).await; /// /// tx2.send(3).await.unwrap(); /// /// time::sleep(Duration::from_millis(25)).await; /// /// // Send the final value /// tx2.send(5).await.unwrap(); /// }); /// /// assert_eq!(1, rx.next().await.unwrap()); /// assert_eq!(2, rx.next().await.unwrap()); /// assert_eq!(3, rx.next().await.unwrap()); /// assert_eq!(4, rx.next().await.unwrap()); /// assert_eq!(5, rx.next().await.unwrap()); /// /// // The merged stream is consumed /// assert!(rx.next().await.is_none()); /// } /// ``` fn merge<U>(self, other: U) -> Merge<Self, U> where U: Stream<Item = Self::Item>, Self: Sized, { Merge::new(self, other) } /// Filters the values produced by this stream according to the provided /// predicate. /// /// As values of this stream are made available, the provided predicate `f` /// will be run against them. If the predicate /// resolves to `true`, then the stream will yield the value, but if the /// predicate resolves to `false`, then the value /// will be discarded and the next value will be produced. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to [`Iterator::filter`] method in the /// standard library. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=8); /// let mut evens = stream.filter(|x| x % 2 == 0); /// /// assert_eq!(Some(2), evens.next().await); /// assert_eq!(Some(4), evens.next().await); /// assert_eq!(Some(6), evens.next().await); /// assert_eq!(Some(8), evens.next().await); /// assert_eq!(None, evens.next().await); /// # } /// ``` fn filter<F>(self, f: F) -> Filter<Self, F> where F: FnMut(&Self::Item) -> bool, Self: Sized, { Filter::new(self, f) } /// Filters the values produced by this stream while simultaneously mapping /// them to a different type according to the provided closure. /// /// As values of this stream are made available, the provided function will /// be run on them. If the predicate `f` resolves to /// [`Some(item)`](Some) then the stream will yield the value `item`, but if /// it resolves to [`None`], then the value will be skipped. /// /// Note that this function consumes the stream passed into it and returns a /// wrapped version of it, similar to [`Iterator::filter_map`] method in the /// standard library. /// /// # Examples /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let stream = stream::iter(1..=8); /// let mut evens = stream.filter_map(|x| { /// if x % 2 == 0 { Some(x + 1) } else { None } /// }); /// /// assert_eq!(Some(3), evens.next().await); /// assert_eq!(Some(5), evens.next().await); /// assert_eq!(Some(7), evens.next().await); /// assert_eq!(Some(9), evens.next().await); /// assert_eq!(None, evens.next().await); /// # } /// ``` fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F> where F: FnMut(Self::Item) -> Option<T>, Self: Sized, { FilterMap::new(self, f) } /// Creates a stream which ends after the first `None`. /// /// After a stream returns `None`, behavior is undefined. Future calls to /// `poll_next` may or may not return `Some(T)` again or they may panic. /// `fuse()` adapts a stream, ensuring that after `None` is given, it will /// return `None` forever. /// /// # Examples /// /// ``` /// use tokio::stream::{Stream, StreamExt}; /// /// use std::pin::Pin; /// use std::task::{Context, Poll}; /// /// // a stream which alternates between Some and None /// struct Alternate { /// state: i32, /// } /// /// impl Stream for Alternate { /// type Item = i32; /// /// fn poll_next(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<i32>> { /// let val = self.state; /// self.state = self.state + 1; /// /// // if it's even, Some(i32), else None /// if val % 2 == 0 { /// Poll::Ready(Some(val)) /// } else { /// Poll::Ready(None) /// } /// } /// } /// /// #[tokio::main] /// async fn main() { /// let mut stream = Alternate { state: 0 }; /// /// // the stream goes back and forth /// assert_eq!(stream.next().await, Some(0)); /// assert_eq!(stream.next().await, None); /// assert_eq!(stream.next().await, Some(2)); /// assert_eq!(stream.next().await, None); /// /// // however, once it is fused /// let mut stream = stream.fuse(); /// /// assert_eq!(stream.next().await, Some(4)); /// assert_eq!(stream.next().await, None); /// /// // it will always return `None` after the first time. /// assert_eq!(stream.next().await, None); /// assert_eq!(stream.next().await, None); /// assert_eq!(stream.next().await, None); /// } /// ``` fn fuse(self) -> Fuse<Self> where Self: Sized, { Fuse::new(self) } /// Creates a new stream of at most `n` items of the underlying stream. /// /// Once `n` items have been yielded from this stream then it will always /// return that the stream is done. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..=10).take(3); /// /// assert_eq!(Some(1), stream.next().await); /// assert_eq!(Some(2), stream.next().await); /// assert_eq!(Some(3), stream.next().await); /// assert_eq!(None, stream.next().await); /// # } /// ``` fn take(self, n: usize) -> Take<Self> where Self: Sized, { Take::new(self, n) } /// Take elements from this stream while the provided predicate /// resolves to `true`. /// /// This function, like `Iterator::take_while`, will take elements from the /// stream until the predicate `f` resolves to `false`. Once one element /// returns false it will always return that the stream is done. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..=10).take_while(|x| *x <= 3); /// /// assert_eq!(Some(1), stream.next().await); /// assert_eq!(Some(2), stream.next().await); /// assert_eq!(Some(3), stream.next().await); /// assert_eq!(None, stream.next().await); /// # } /// ``` fn take_while<F>(self, f: F) -> TakeWhile<Self, F> where F: FnMut(&Self::Item) -> bool, Self: Sized, { TakeWhile::new(self, f) } /// Creates a new stream that will skip the `n` first items of the /// underlying stream. /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let mut stream = stream::iter(1..=10).skip(7); /// /// assert_eq!(Some(8), stream.next().await); /// assert_eq!(Some(9), stream.next().await); /// assert_eq!(Some(10), stream.next().await); /// assert_eq!(None, stream.next().await); /// # } /// ``` fn skip(self, n: usize) -> Skip<Self> where Self: Sized, { Skip::new(self, n) } /// Skip elements from the underlying stream while the provided predicate /// resolves to `true`. /// /// This function, like [`Iterator::skip_while`], will ignore elemets from the /// stream until the predicate `f` resolves to `false`. Once one element /// returns false, the rest of the elements will be yielded. /// /// [`Iterator::skip_while`]: std::iter::Iterator::skip_while() /// /// # Examples /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// let mut stream = stream::iter(vec![1,2,3,4,1]).skip_while(|x| *x < 3); /// /// assert_eq!(Some(3), stream.next().await); /// assert_eq!(Some(4), stream.next().await); /// assert_eq!(Some(1), stream.next().await); /// assert_eq!(None, stream.next().await); /// # } /// ``` fn skip_while<F>(self, f: F) -> SkipWhile<Self, F> where F: FnMut(&Self::Item) -> bool, Self: Sized, { SkipWhile::new(self, f) } /// Tests if every element of the stream matches a predicate. /// /// Equivalent to: /// /// ```ignore /// async fn all<F>(&mut self, f: F) -> bool; /// ``` /// /// `all()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the stream, and if they all return /// `true`, then so does `all`. If any of them return `false`, it /// returns `false`. An empty stream returns `true`. /// /// `all()` is short-circuiting; in other words, it will stop processing /// as soon as it finds a `false`, given that no matter what else happens, /// the result will also be `false`. /// /// An empty stream returns `true`. /// /// # Examples /// /// Basic usage: /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let a = [1, 2, 3]; /// /// assert!(stream::iter(&a).all(|&x| x > 0).await); /// /// assert!(!stream::iter(&a).all(|&x| x > 2).await); /// # } /// ``` /// /// Stopping at the first `false`: /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let a = [1, 2, 3]; /// /// let mut iter = stream::iter(&a); /// /// assert!(!iter.all(|&x| x != 2).await); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next().await, Some(&3)); /// # } /// ``` fn all<F>(&mut self, f: F) -> AllFuture<'_, Self, F> where Self: Unpin, F: FnMut(Self::Item) -> bool, { AllFuture::new(self, f) } /// Tests if any element of the stream matches a predicate. /// /// Equivalent to: /// /// ```ignore /// async fn any<F>(&mut self, f: F) -> bool; /// ``` /// /// `any()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the stream, and if any of them return /// `true`, then so does `any()`. If they all return `false`, it /// returns `false`. /// /// `any()` is short-circuiting; in other words, it will stop processing /// as soon as it finds a `true`, given that no matter what else happens, /// the result will also be `true`. /// /// An empty stream returns `false`. /// /// Basic usage: /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let a = [1, 2, 3]; /// /// assert!(stream::iter(&a).any(|&x| x > 0).await); /// /// assert!(!stream::iter(&a).any(|&x| x > 5).await); /// # } /// ``` /// /// Stopping at the first `true`: /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// /// let a = [1, 2, 3]; /// /// let mut iter = stream::iter(&a); /// /// assert!(iter.any(|&x| x != 2).await); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next().await, Some(&2)); /// # } /// ``` fn any<F>(&mut self, f: F) -> AnyFuture<'_, Self, F> where Self: Unpin, F: FnMut(Self::Item) -> bool, { AnyFuture::new(self, f) } /// Combine two streams into one by first returning all values from the /// first stream then all values from the second stream. /// /// As long as `self` still has values to emit, no values from `other` are /// emitted, even if some are ready. /// /// # Examples /// /// ``` /// use tokio::stream::{self, StreamExt}; /// /// #[tokio::main] /// async fn main() { /// let one = stream::iter(vec![1, 2, 3]); /// let two = stream::iter(vec![4, 5, 6]); /// /// let mut stream = one.chain(two); /// /// assert_eq!(stream.next().await, Some(1)); /// assert_eq!(stream.next().await, Some(2)); /// assert_eq!(stream.next().await, Some(3)); /// assert_eq!(stream.next().await, Some(4)); /// assert_eq!(stream.next().await, Some(5)); /// assert_eq!(stream.next().await, Some(6)); /// assert_eq!(stream.next().await, None); /// } /// ``` fn chain<U>(self, other: U) -> Chain<Self, U> where U: Stream<Item = Self::Item>, Self: Sized, { Chain::new(self, other) } /// A combinator that applies a function to every element in a stream /// producing a single, final value. /// /// Equivalent to: /// /// ```ignore /// async fn fold<B, F>(self, init: B, f: F) -> B; /// ``` /// /// # Examples /// Basic usage: /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, *}; /// /// let s = stream::iter(vec![1u8, 2, 3]); /// let sum = s.fold(0, |acc, x| acc + x).await; /// /// assert_eq!(sum, 6); /// # } /// ``` fn fold<B, F>(self, init: B, f: F) -> FoldFuture<Self, B, F> where Self: Sized, F: FnMut(B, Self::Item) -> B, { FoldFuture::new(self, init, f) } /// Drain stream pushing all emitted values into a collection. /// /// Equivalent to: /// /// ```ignore /// async fn collect<T>(self) -> T; /// ``` /// /// `collect` streams all values, awaiting as needed. Values are pushed into /// a collection. A number of different target collection types are /// supported, including [`Vec`](std::vec::Vec), /// [`String`](std::string::String), and [`Bytes`](bytes::Bytes). /// /// # `Result` /// /// `collect()` can also be used with streams of type `Result<T, E>` where /// `T: FromStream<_>`. In this case, `collect()` will stream as long as /// values yielded from the stream are `Ok(_)`. If `Err(_)` is encountered, /// streaming is terminated and `collect()` returns the `Err`. /// /// # Notes /// /// `FromStream` is currently a sealed trait. Stabilization is pending /// enhancements to the Rust language. /// /// # Examples /// /// Basic usage: /// /// ``` /// use tokio::stream::{self, StreamExt}; /// /// #[tokio::main] /// async fn main() { /// let doubled: Vec<i32> = /// stream::iter(vec![1, 2, 3]) /// .map(|x| x * 2) /// .collect() /// .await; /// /// assert_eq!(vec![2, 4, 6], doubled); /// } /// ``` /// /// Collecting a stream of `Result` values /// /// ``` /// use tokio::stream::{self, StreamExt}; /// /// #[tokio::main] /// async fn main() { /// // A stream containing only `Ok` values will be collected /// let values: Result<Vec<i32>, &str> = /// stream::iter(vec![Ok(1), Ok(2), Ok(3)]) /// .collect() /// .await; /// /// assert_eq!(Ok(vec![1, 2, 3]), values); /// /// // A stream containing `Err` values will return the first error. /// let results = vec![Ok(1), Err("no"), Ok(2), Ok(3), Err("nein")]; /// /// let values: Result<Vec<i32>, &str> = /// stream::iter(results) /// .collect() /// .await; /// /// assert_eq!(Err("no"), values); /// } /// ``` fn collect<T>(self) -> Collect<Self, T> where T: FromStream<Self::Item>, Self: Sized, { Collect::new(self) } /// Applies a per-item timeout to the passed stream. /// /// `timeout()` takes a `Duration` that represents the maximum amount of /// time each element of the stream has to complete before timing out. /// /// If the wrapped stream yields a value before the deadline is reached, the /// value is returned. Otherwise, an error is returned. The caller may decide /// to continue consuming the stream and will eventually get the next source /// stream value once it becomes available. /// /// # Notes /// /// This function consumes the stream passed into it and returns a /// wrapped version of it. /// /// Polling the returned stream will continue to poll the inner stream even /// if one or more items time out. /// /// # Examples /// /// Suppose we have a stream `int_stream` that yields 3 numbers (1, 2, 3): /// /// ``` /// # #[tokio::main] /// # async fn main() { /// use tokio::stream::{self, StreamExt}; /// use std::time::Duration; /// # let int_stream = stream::iter(1..=3); /// /// let mut int_stream = int_stream.timeout(Duration::from_secs(1)); /// /// // When no items time out, we get the 3 elements in succession: /// assert_eq!(int_stream.try_next().await, Ok(Some(1))); /// assert_eq!(int_stream.try_next().await, Ok(Some(2))); /// assert_eq!(int_stream.try_next().await, Ok(Some(3))); /// assert_eq!(int_stream.try_next().await, Ok(None)); /// /// // If the second item times out, we get an error and continue polling the stream: /// # let mut int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]); /// assert_eq!(int_stream.try_next().await, Ok(Some(1))); /// assert!(int_stream.try_next().await.is_err()); /// assert_eq!(int_stream.try_next().await, Ok(Some(2))); /// assert_eq!(int_stream.try_next().await, Ok(Some(3))); /// assert_eq!(int_stream.try_next().await, Ok(None)); /// /// // If we want to stop consuming the source stream the first time an /// // element times out, we can use the `take_while` operator: /// # let int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]); /// let mut int_stream = int_stream.take_while(Result::is_ok); /// /// assert_eq!(int_stream.try_next().await, Ok(Some(1))); /// assert_eq!(int_stream.try_next().await, Ok(None)); /// # } /// ``` #[cfg(all(feature = "time"))] #[cfg_attr(docsrs, doc(cfg(feature = "time")))] fn timeout(self, duration: Duration) -> Timeout<Self> where Self: Sized, { Timeout::new(self, duration) } /// Slows down a stream by enforcing a delay between items. /// /// # Example /// /// Create a throttled stream. /// ```rust,no_run /// use std::time::Duration; /// use tokio::stream::StreamExt; /// /// # async fn dox() { /// let mut item_stream = futures::stream::repeat("one").throttle(Duration::from_secs(2)); /// /// loop { /// // The string will be produced at most every 2 seconds /// println!("{:?}", item_stream.next().await); /// } /// # } /// ``` #[cfg(all(feature = "time"))] #[cfg_attr(docsrs, doc(cfg(feature = "time")))] fn throttle(self, duration: Duration) -> Throttle<Self> where Self: Sized, { throttle(duration, self) } } impl<St: ?Sized> StreamExt for St where St: Stream {} /// Merge the size hints from two streams. fn merge_size_hints( (left_low, left_high): (usize, Option<usize>), (right_low, right_hign): (usize, Option<usize>), ) -> (usize, Option<usize>) { let low = left_low.saturating_add(right_low); let high = match (left_high, right_hign) { (Some(h1), Some(h2)) => h1.checked_add(h2), _ => None, }; (low, high) }