Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` can be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction.
///
/// Note that `A` and `B` are `Self` by default, but this is not mandatory.
///
/// # Example
///
/// ```
/// use std::f32;
///
/// let m = 10.0_f32;
/// let x = 4.0_f32;
/// let b = 60.0_f32;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference <= 100.0 * f32::EPSILON);
/// ```
pub trait MulAdd<A = Self, B = Self> {
    /// The resulting type after applying the fused multiply-add.
    type Output;

    /// Performs the fused multiply-add operation.
    fn mul_add(self, a: A, b: B) -> Self::Output;
}

/// The fused multiply-add assignment operation.
pub trait MulAddAssign<A = Self, B = Self> {
    /// Performs the fused multiply-add operation.
    fn mul_add_assign(&mut self, a: A, b: B);
}

#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f32, f32> for f32 {
    type Output = Self;

    #[inline]
    fn mul_add(self, a: Self, b: Self) -> Self::Output {
        <Self as ::Float>::mul_add(self, a, b)
    }
}

#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f64, f64> for f64 {
    type Output = Self;

    #[inline]
    fn mul_add(self, a: Self, b: Self) -> Self::Output {
        <Self as ::Float>::mul_add(self, a, b)
    }
}

macro_rules! mul_add_impl {
    ($trait_name:ident for $($t:ty)*) => {$(
        impl $trait_name for $t {
            type Output = Self;

            #[inline]
            fn mul_add(self, a: Self, b: Self) -> Self::Output {
                (self * a) + b
            }
        }
    )*}
}

mul_add_impl!(MulAdd for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
#[cfg(has_i128)]
mul_add_impl!(MulAdd for i128 u128);

#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f32, f32> for f32 {
    #[inline]
    fn mul_add_assign(&mut self, a: Self, b: Self) {
        *self = <Self as ::Float>::mul_add(*self, a, b)
    }
}

#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f64, f64> for f64 {
    #[inline]
    fn mul_add_assign(&mut self, a: Self, b: Self) {
        *self = <Self as ::Float>::mul_add(*self, a, b)
    }
}

macro_rules! mul_add_assign_impl {
    ($trait_name:ident for $($t:ty)*) => {$(
        impl $trait_name for $t {
            #[inline]
            fn mul_add_assign(&mut self, a: Self, b: Self) {
                *self = (*self * a) + b
            }
        }
    )*}
}

mul_add_assign_impl!(MulAddAssign for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
#[cfg(has_i128)]
mul_add_assign_impl!(MulAddAssign for i128 u128);

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn mul_add_integer() {
        macro_rules! test_mul_add {
            ($($t:ident)+) => {
                $(
                    {
                        let m: $t = 2;
                        let x: $t = 3;
                        let b: $t = 4;

                        assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b));
                    }
                )+
            };
        }

        test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
    }

    #[test]
    #[cfg(feature = "std")]
    fn mul_add_float() {
        macro_rules! test_mul_add {
            ($($t:ident)+) => {
                $(
                    {
                        use core::$t;

                        let m: $t = 12.0;
                        let x: $t = 3.4;
                        let b: $t = 5.6;

                        let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs();

                        assert!(abs_difference <= 46.4 * $t::EPSILON);
                    }
                )+
            };
        }

        test_mul_add!(f32 f64);
    }
}