1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
// Copyright 2015-2016 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! HMAC is specified in [RFC 2104]. //! //! After a `Key` is constructed, it can be used for multiple signing or //! verification operations. Separating the construction of the key from the //! rest of the HMAC operation allows the per-key precomputation to be done //! only once, instead of it being done in every HMAC operation. //! //! Frequently all the data to be signed in a message is available in a single //! contiguous piece. In that case, the module-level `sign` function can be //! used. Otherwise, if the input is in multiple parts, `Context` should be //! used. //! //! # Examples: //! //! ## Signing a value and verifying it wasn't tampered with //! //! ``` //! use ring::{hmac, rand}; //! //! let rng = rand::SystemRandom::new(); //! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?; //! //! let msg = "hello, world"; //! //! let tag = hmac::sign(&key, msg.as_bytes()); //! //! // [We give access to the message to an untrusted party, and they give it //! // back to us. We need to verify they didn't tamper with it.] //! //! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?; //! //! # Ok::<(), ring::error::Unspecified>(()) //! ``` //! //! ## Using the one-shot API: //! //! ``` //! use ring::{digest, hmac, rand}; //! use ring::rand::SecureRandom; //! //! let msg = "hello, world"; //! //! // The sender generates a secure key value and signs the message with it. //! // Note that in a real protocol, a key agreement protocol would be used to //! // derive `key_value`. //! let rng = rand::SystemRandom::new(); //! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose(); //! //! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref()); //! let tag = hmac::sign(&s_key, msg.as_bytes()); //! //! // The receiver (somehow!) knows the key value, and uses it to verify the //! // integrity of the message. //! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref()); //! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?; //! //! # Ok::<(), ring::error::Unspecified>(()) //! ``` //! //! ## Using the multi-part API: //! ``` //! use ring::{digest, hmac, rand}; //! use ring::rand::SecureRandom; //! //! let parts = ["hello", ", ", "world"]; //! //! // The sender generates a secure key value and signs the message with it. //! // Note that in a real protocol, a key agreement protocol would be used to //! // derive `key_value`. //! let rng = rand::SystemRandom::new(); //! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose(); //! //! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref()); //! let mut s_ctx = hmac::Context::with_key(&s_key); //! for part in &parts { //! s_ctx.update(part.as_bytes()); //! } //! let tag = s_ctx.sign(); //! //! // The receiver (somehow!) knows the key value, and uses it to verify the //! // integrity of the message. //! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref()); //! let mut msg = Vec::<u8>::new(); //! for part in &parts { //! msg.extend(part.as_bytes()); //! } //! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?; //! //! # Ok::<(), ring::error::Unspecified>(()) //! ``` //! //! [RFC 2104]: https://tools.ietf.org/html/rfc2104 //! [code for `ring::pbkdf2`]: //! https://github.com/briansmith/ring/blob/main/src/pbkdf2.rs //! [code for `ring::hkdf`]: //! https://github.com/briansmith/ring/blob/main/src/hkdf.rs use crate::{constant_time, digest, error, hkdf, rand}; /// An HMAC algorithm. #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub struct Algorithm(&'static digest::Algorithm); impl Algorithm { /// The digest algorithm this HMAC algorithm is based on. #[inline] pub fn digest_algorithm(&self) -> &'static digest::Algorithm { self.0 } } /// HMAC using SHA-1. Obsolete. pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY); /// HMAC using SHA-256. pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256); /// HMAC using SHA-384. pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384); /// HMAC using SHA-512. pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512); /// A deprecated alias for `Tag`. #[deprecated(note = "`Signature` was renamed to `Tag`. This alias will be removed soon.")] pub type Signature = Tag; /// An HMAC tag. /// /// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice. #[derive(Clone, Copy, Debug)] pub struct Tag(digest::Digest); impl AsRef<[u8]> for Tag { #[inline] fn as_ref(&self) -> &[u8] { self.0.as_ref() } } /// A key to use for HMAC signing. #[derive(Clone)] pub struct Key { inner: digest::BlockContext, outer: digest::BlockContext, } /// `hmac::SigningKey` was renamed to `hmac::Key`. #[deprecated(note = "Renamed to `hmac::Key`.")] pub type SigningKey = Key; /// `hmac::VerificationKey` was merged into `hmac::Key`. #[deprecated( note = "The distinction between verification & signing keys was removed. Use `hmac::Key`." )] pub type VerificationKey = Key; impl core::fmt::Debug for Key { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("Key") .field("algorithm", self.algorithm().digest_algorithm()) .finish() } } impl Key { /// Generate an HMAC signing key using the given digest algorithm with a /// random value generated from `rng`. /// /// The key will be `digest_alg.output_len` bytes long, based on the /// recommendation in [RFC 2104 Section 3]. /// /// [RFC 2104 Section 3]: https://tools.ietf.org/html/rfc2104#section-3 pub fn generate( algorithm: Algorithm, rng: &dyn rand::SecureRandom, ) -> Result<Self, error::Unspecified> { Self::construct(algorithm, |buf| rng.fill(buf)) } fn construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, error::Unspecified> where F: FnOnce(&mut [u8]) -> Result<(), error::Unspecified>, { let mut key_bytes = [0; digest::MAX_OUTPUT_LEN]; let key_bytes = &mut key_bytes[..algorithm.0.output_len]; fill(key_bytes)?; Ok(Self::new(algorithm, key_bytes)) } /// Construct an HMAC signing key using the given digest algorithm and key /// value. /// /// `key_value` should be a value generated using a secure random number /// generator (e.g. the `key_value` output by /// `SealingKey::generate_serializable()`) or derived from a random key by /// a key derivation function (e.g. `ring::hkdf`). In particular, /// `key_value` shouldn't be a password. /// /// As specified in RFC 2104, if `key_value` is shorter than the digest /// algorithm's block length (as returned by `digest::Algorithm::block_len`, /// not the digest length returned by `digest::Algorithm::output_len`) then /// it will be padded with zeros. Similarly, if it is longer than the block /// length then it will be compressed using the digest algorithm. /// /// You should not use keys larger than the `digest_alg.block_len` because /// the truncation described above reduces their strength to only /// `digest_alg.output_len * 8` bits. Support for such keys is likely to be /// removed in a future version of *ring*. pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self { let digest_alg = algorithm.0; let mut key = Self { inner: digest::BlockContext::new(digest_alg), outer: digest::BlockContext::new(digest_alg), }; let key_hash; let key_value = if key_value.len() <= digest_alg.block_len { key_value } else { key_hash = digest::digest(digest_alg, key_value); key_hash.as_ref() }; const IPAD: u8 = 0x36; let mut padded_key = [IPAD; digest::MAX_BLOCK_LEN]; let padded_key = &mut padded_key[..digest_alg.block_len]; // If the key is shorter than one block then we're supposed to act like // it is padded with zero bytes up to the block length. `x ^ 0 == x` so // we can just leave the trailing bytes of `padded_key` untouched. for (padded_key, key_value) in padded_key.iter_mut().zip(key_value.iter()) { *padded_key ^= *key_value; } key.inner.update(&padded_key); const OPAD: u8 = 0x5C; // Remove the `IPAD` masking, leaving the unmasked padded key, then // mask with `OPAD`, all in one step. for b in padded_key.iter_mut() { *b ^= IPAD ^ OPAD; } key.outer.update(&padded_key); key } /// The digest algorithm for the key. #[inline] pub fn algorithm(&self) -> Algorithm { Algorithm(self.inner.algorithm) } } impl hkdf::KeyType for Algorithm { fn len(&self) -> usize { self.digest_algorithm().output_len } } impl From<hkdf::Okm<'_, Algorithm>> for Key { fn from(okm: hkdf::Okm<Algorithm>) -> Self { Key::construct(*okm.len(), |buf| okm.fill(buf)).unwrap() } } /// A context for multi-step (Init-Update-Finish) HMAC signing. /// /// Use `sign` for single-step HMAC signing. #[derive(Clone)] pub struct Context { inner: digest::Context, outer: digest::BlockContext, } /// `hmac::SigningContext` was renamed to `hmac::Context`. #[deprecated(note = "Renamed to `hmac::Context`.")] pub type SigningContext = Context; impl core::fmt::Debug for Context { fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> { f.debug_struct("Context") .field("algorithm", self.inner.algorithm()) .finish() } } impl Context { /// Constructs a new HMAC signing context using the given digest algorithm /// and key. pub fn with_key(signing_key: &Key) -> Self { Self { inner: digest::Context::clone_from(&signing_key.inner), outer: signing_key.outer.clone(), } } /// Updates the HMAC with all the data in `data`. `update` may be called /// zero or more times until `finish` is called. pub fn update(&mut self, data: &[u8]) { self.inner.update(data); } /// Finalizes the HMAC calculation and returns the HMAC value. `sign` /// consumes the context so it cannot be (mis-)used after `sign` has been /// called. /// /// It is generally not safe to implement HMAC verification by comparing /// the return value of `sign` to a tag. Use `verify` for verification /// instead. pub fn sign(self) -> Tag { let algorithm = self.inner.algorithm(); let mut pending = [0u8; digest::MAX_BLOCK_LEN]; let pending = &mut pending[..algorithm.block_len]; let num_pending = algorithm.output_len; pending[..num_pending].copy_from_slice(self.inner.finish().as_ref()); Tag(self.outer.finish(pending, num_pending)) } } /// Calculates the HMAC of `data` using the key `key` in one step. /// /// Use `Context` to calculate HMACs where the input is in multiple parts. /// /// It is generally not safe to implement HMAC verification by comparing the /// return value of `sign` to a tag. Use `verify` for verification instead. pub fn sign(key: &Key, data: &[u8]) -> Tag { let mut ctx = Context::with_key(key); ctx.update(data); ctx.sign() } /// Calculates the HMAC of `data` using the signing key `key`, and verifies /// whether the resultant value equals `tag`, in one step. /// /// This is logically equivalent to, but more efficient than, constructing a /// `Key` with the same value as `key` and then using `verify`. /// /// The verification will be done in constant time to prevent timing attacks. pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), error::Unspecified> { constant_time::verify_slices_are_equal(sign(key, data).as_ref(), tag) } #[cfg(test)] mod tests { use crate::{hmac, rand}; // Make sure that `Key::generate` and `verify_with_own_key` aren't // completely wacky. #[test] pub fn hmac_signing_key_coverage() { let rng = rand::SystemRandom::new(); const HELLO_WORLD_GOOD: &[u8] = b"hello, world"; const HELLO_WORLD_BAD: &[u8] = b"hello, worle"; for algorithm in &[ hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY, hmac::HMAC_SHA256, hmac::HMAC_SHA384, hmac::HMAC_SHA512, ] { let key = hmac::Key::generate(*algorithm, &rng).unwrap(); let tag = hmac::sign(&key, HELLO_WORLD_GOOD); assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok()); assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err()) } } }