Files
addr2line
adler
aho_corasick
ansi_term
arraydeque
as_slice
atty
backtrace
base64
bincode_core
bitflags
byteorder
bytes
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
ctrlc
derivative
dlib
downcast_rs
enumflags2
enumflags2_derive
evdev_rs
evdev_sys
failure
failure_derive
flexi_logger
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
glob
hash32
heapless
hid_io_core
hid_io_protocol
hidapi
install_service
lazy_static
libc
libloading
libudev_sys
log
memchr
memmap
miniz_oxide
mio
nanoid
nix
num_cpus
num_enum
num_enum_derive
num_integer
num_traits
object
once_cell
open
pem
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
sct
serde
serde_derive
slab
smallvec
spin
stable_deref_trait
strsim
syn
synstructure
sys_info
tempfile
textwrap
thiserror
thiserror_impl
time
tokio
future
io
loom
macros
net
park
runtime
stream
sync
task
time
util
tokio_macros
tokio_rustls
tokio_util
typenum
udev
uhid_virt
uhidrs_sys
unicode_width
unicode_xid
untrusted
vec_map
wayland_client
wayland_commons
wayland_sys
webpki
which
x11
xcb
xkbcommon
yansi
yasna
zwp_virtual_keyboard
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// There's a lot of scary concurrent code in this module, but it is copied from
// `std::sync::Once` with two changes:
//   * no poisoning
//   * init function can fail

use std::{
    cell::{Cell, UnsafeCell},
    hint::unreachable_unchecked,
    marker::PhantomData,
    panic::{RefUnwindSafe, UnwindSafe},
    sync::atomic::{AtomicBool, AtomicUsize, Ordering},
    thread::{self, Thread},
};

use crate::take_unchecked;

#[derive(Debug)]
pub(crate) struct OnceCell<T> {
    // This `state` word is actually an encoded version of just a pointer to a
    // `Waiter`, so we add the `PhantomData` appropriately.
    state_and_queue: AtomicUsize,
    _marker: PhantomData<*mut Waiter>,
    value: UnsafeCell<Option<T>>,
}

// Why do we need `T: Send`?
// Thread A creates a `OnceCell` and shares it with
// scoped thread B, which fills the cell, which is
// then destroyed by A. That is, destructor observes
// a sent value.
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}

impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}

// Three states that a OnceCell can be in, encoded into the lower bits of `state` in
// the OnceCell structure.
const INCOMPLETE: usize = 0x0;
const RUNNING: usize = 0x1;
const COMPLETE: usize = 0x2;

// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;

// Representation of a node in the linked list of waiters in the RUNNING state.
#[repr(align(4))] // Ensure the two lower bits are free to use as state bits.
struct Waiter {
    thread: Cell<Option<Thread>>,
    signaled: AtomicBool,
    next: *const Waiter,
}

// Head of a linked list of waiters.
// Every node is a struct on the stack of a waiting thread.
// Will wake up the waiters when it gets dropped, i.e. also on panic.
struct WaiterQueue<'a> {
    state_and_queue: &'a AtomicUsize,
    set_state_on_drop_to: usize,
}

impl<T> OnceCell<T> {
    pub(crate) const fn new() -> OnceCell<T> {
        OnceCell {
            state_and_queue: AtomicUsize::new(INCOMPLETE),
            _marker: PhantomData,
            value: UnsafeCell::new(None),
        }
    }

    /// Safety: synchronizes with store to value via Release/(Acquire|SeqCst).
    #[inline]
    pub(crate) fn is_initialized(&self) -> bool {
        // An `Acquire` load is enough because that makes all the initialization
        // operations visible to us, and, this being a fast path, weaker
        // ordering helps with performance. This `Acquire` synchronizes with
        // `SeqCst` operations on the slow path.
        self.state_and_queue.load(Ordering::Acquire) == COMPLETE
    }

    /// Safety: synchronizes with store to value via SeqCst read from state,
    /// writes value only once because we never get to INCOMPLETE state after a
    /// successful write.
    #[cold]
    pub(crate) fn initialize<F, E>(&self, f: F) -> Result<(), E>
    where
        F: FnOnce() -> Result<T, E>,
    {
        let mut f = Some(f);
        let mut res: Result<(), E> = Ok(());
        let slot: *mut Option<T> = self.value.get();
        initialize_inner(&self.state_and_queue, &mut || {
            let f = unsafe { take_unchecked(&mut f) };
            match f() {
                Ok(value) => {
                    unsafe { *slot = Some(value) };
                    true
                }
                Err(err) => {
                    res = Err(err);
                    false
                }
            }
        });
        res
    }

    /// Get the reference to the underlying value, without checking if the cell
    /// is initialized.
    ///
    /// # Safety
    ///
    /// Caller must ensure that the cell is in initialized state, and that
    /// the contents are acquired by (synchronized to) this thread.
    pub(crate) unsafe fn get_unchecked(&self) -> &T {
        debug_assert!(self.is_initialized());
        let slot: &Option<T> = &*self.value.get();
        match slot {
            Some(value) => value,
            // This unsafe does improve performance, see `examples/bench`.
            None => {
                debug_assert!(false);
                unreachable_unchecked()
            }
        }
    }

    /// Gets the mutable reference to the underlying value.
    /// Returns `None` if the cell is empty.
    pub(crate) fn get_mut(&mut self) -> Option<&mut T> {
        // Safe b/c we have a unique access.
        unsafe { &mut *self.value.get() }.as_mut()
    }

    /// Consumes this `OnceCell`, returning the wrapped value.
    /// Returns `None` if the cell was empty.
    #[inline]
    pub(crate) fn into_inner(self) -> Option<T> {
        // Because `into_inner` takes `self` by value, the compiler statically
        // verifies that it is not currently borrowed.
        // So, it is safe to move out `Option<T>`.
        self.value.into_inner()
    }
}

// Corresponds to `std::sync::Once::call_inner`
// Note: this is intentionally monomorphic
#[inline(never)]
fn initialize_inner(my_state_and_queue: &AtomicUsize, init: &mut dyn FnMut() -> bool) -> bool {
    let mut state_and_queue = my_state_and_queue.load(Ordering::Acquire);

    loop {
        match state_and_queue {
            COMPLETE => return true,
            INCOMPLETE => {
                let exchange = my_state_and_queue.compare_exchange(
                    state_and_queue,
                    RUNNING,
                    Ordering::Acquire,
                    Ordering::Acquire,
                );
                if let Err(old) = exchange {
                    state_and_queue = old;
                    continue;
                }
                let mut waiter_queue = WaiterQueue {
                    state_and_queue: my_state_and_queue,
                    set_state_on_drop_to: INCOMPLETE, // Difference, std uses `POISONED`
                };
                let success = init();

                // Difference, std always uses `COMPLETE`
                waiter_queue.set_state_on_drop_to = if success { COMPLETE } else { INCOMPLETE };
                return success;
            }
            _ => {
                assert!(state_and_queue & STATE_MASK == RUNNING);
                wait(&my_state_and_queue, state_and_queue);
                state_and_queue = my_state_and_queue.load(Ordering::Acquire);
            }
        }
    }
}

// Copy-pasted from std exactly.
fn wait(state_and_queue: &AtomicUsize, mut current_state: usize) {
    loop {
        if current_state & STATE_MASK != RUNNING {
            return;
        }

        let node = Waiter {
            thread: Cell::new(Some(thread::current())),
            signaled: AtomicBool::new(false),
            next: (current_state & !STATE_MASK) as *const Waiter,
        };
        let me = &node as *const Waiter as usize;

        let exchange = state_and_queue.compare_exchange(
            current_state,
            me | RUNNING,
            Ordering::Release,
            Ordering::Relaxed,
        );
        if let Err(old) = exchange {
            current_state = old;
            continue;
        }

        while !node.signaled.load(Ordering::Acquire) {
            thread::park();
        }
        break;
    }
}

// Copy-pasted from std exactly.
impl Drop for WaiterQueue<'_> {
    fn drop(&mut self) {
        let state_and_queue =
            self.state_and_queue.swap(self.set_state_on_drop_to, Ordering::AcqRel);

        assert_eq!(state_and_queue & STATE_MASK, RUNNING);

        unsafe {
            let mut queue = (state_and_queue & !STATE_MASK) as *const Waiter;
            while !queue.is_null() {
                let next = (*queue).next;
                let thread = (*queue).thread.replace(None).unwrap();
                (*queue).signaled.store(true, Ordering::Release);
                queue = next;
                thread.unpark();
            }
        }
    }
}

// These test are snatched from std as well.
#[cfg(test)]
mod tests {
    use std::panic;
    use std::{sync::mpsc::channel, thread};

    use super::OnceCell;

    impl<T> OnceCell<T> {
        fn init(&self, f: impl FnOnce() -> T) {
            enum Void {}
            let _ = self.initialize(|| Ok::<T, Void>(f()));
        }
    }

    #[test]
    fn smoke_once() {
        static O: OnceCell<()> = OnceCell::new();
        let mut a = 0;
        O.init(|| a += 1);
        assert_eq!(a, 1);
        O.init(|| a += 1);
        assert_eq!(a, 1);
    }

    #[test]
    #[cfg(not(miri))]
    fn stampede_once() {
        static O: OnceCell<()> = OnceCell::new();
        static mut RUN: bool = false;

        let (tx, rx) = channel();
        for _ in 0..10 {
            let tx = tx.clone();
            thread::spawn(move || {
                for _ in 0..4 {
                    thread::yield_now()
                }
                unsafe {
                    O.init(|| {
                        assert!(!RUN);
                        RUN = true;
                    });
                    assert!(RUN);
                }
                tx.send(()).unwrap();
            });
        }

        unsafe {
            O.init(|| {
                assert!(!RUN);
                RUN = true;
            });
            assert!(RUN);
        }

        for _ in 0..10 {
            rx.recv().unwrap();
        }
    }

    #[test]
    fn poison_bad() {
        static O: OnceCell<()> = OnceCell::new();

        // poison the once
        let t = panic::catch_unwind(|| {
            O.init(|| panic!());
        });
        assert!(t.is_err());

        // we can subvert poisoning, however
        let mut called = false;
        O.init(|| {
            called = true;
        });
        assert!(called);

        // once any success happens, we stop propagating the poison
        O.init(|| {});
    }

    #[test]
    fn wait_for_force_to_finish() {
        static O: OnceCell<()> = OnceCell::new();

        // poison the once
        let t = panic::catch_unwind(|| {
            O.init(|| panic!());
        });
        assert!(t.is_err());

        // make sure someone's waiting inside the once via a force
        let (tx1, rx1) = channel();
        let (tx2, rx2) = channel();
        let t1 = thread::spawn(move || {
            O.init(|| {
                tx1.send(()).unwrap();
                rx2.recv().unwrap();
            });
        });

        rx1.recv().unwrap();

        // put another waiter on the once
        let t2 = thread::spawn(|| {
            let mut called = false;
            O.init(|| {
                called = true;
            });
            assert!(!called);
        });

        tx2.send(()).unwrap();

        assert!(t1.join().is_ok());
        assert!(t2.join().is_ok());
    }

    #[test]
    #[cfg(target_pointer_width = "64")]
    fn test_size() {
        use std::mem::size_of;

        assert_eq!(size_of::<OnceCell<u32>>(), 4 * size_of::<u32>());
    }
}