Files
aho_corasick
ansi_term
arrayvec
atty
backtrace
backtrace_sys
base64
bincode
bitflags
byteorder
bytes
c2_chacha
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
daemon
failure
failure_derive
flexi_logger
fnv
futures
getrandom
glob
hid_io
api
device
module
protocol
hidapi
install_service
iovec
lazy_static
libc
lock_api
log
memchr
memoffset
mio
mio_uds
nanoid
net2
nix
nodrop
num_cpus
num_integer
num_traits
open
parking_lot
parking_lot_core
pem
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
scopeguard
sct
serde
slab
smallvec
spin
stream_cancel
strsim
syn
synstructure
tempfile
textwrap
thread_local
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
unicode_width
unicode_xid
untrusted
vec_map
void
webpki
windows_service
x11
xcb
xkbcommon
yasna
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
//! An asynchronous `Mutex`-like type.
//!
//! This module provides [`Lock`], a type that acts similarly to an asynchronous `Mutex`, with one
//! major difference: the [`LockGuard`] returned by `poll_lock` is not tied to the lifetime of the
//! `Mutex`. This enables you to acquire a lock, and then pass that guard into a future, and then
//! release it at some later point in time.
//!
//! This allows you to do something along the lines of:
//!
//! ```rust,no_run
//! # #[macro_use]
//! # extern crate futures;
//! # extern crate tokio;
//! # use futures::{future, Poll, Async, Future, Stream};
//! use tokio::sync::lock::{Lock, LockGuard};
//! struct MyType<S> {
//!     lock: Lock<S>,
//! }
//!
//! impl<S> Future for MyType<S>
//!   where S: Stream<Item = u32> + Send + 'static
//! {
//!     type Item = ();
//!     type Error = ();
//!
//!     fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
//!         match self.lock.poll_lock() {
//!             Async::Ready(mut guard) => {
//!                 tokio::spawn(future::poll_fn(move || {
//!                     let item = try_ready!(guard.poll().map_err(|_| ()));
//!                     println!("item = {:?}", item);
//!                     Ok(().into())
//!                 }));
//!                 Ok(().into())
//!             },
//!             Async::NotReady => Ok(Async::NotReady)
//!         }
//!     }
//! }
//! # fn main() {}
//! ```
//!
//!   [`Lock`]: struct.Lock.html
//!   [`LockGuard`]: struct.LockGuard.html

use futures::Async;
use semaphore;
use std::cell::UnsafeCell;
use std::fmt;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;

/// An asynchronous mutual exclusion primitive useful for protecting shared data
///
/// Each mutex has a type parameter (`T`) which represents the data that it is protecting. The data
/// can only be accessed through the RAII guards returned from `poll_lock`, which guarantees that
/// the data is only ever accessed when the mutex is locked.
#[derive(Debug)]
pub struct Lock<T> {
    inner: Arc<State<T>>,
    permit: semaphore::Permit,
}

/// A handle to a held `Lock`.
///
/// As long as you have this guard, you have exclusive access to the underlying `T`. The guard
/// internally keeps a reference-couned pointer to the original `Lock`, so even if the lock goes
/// away, the guard remains valid.
///
/// The lock is automatically released whenever the guard is dropped, at which point `poll_lock`
/// will succeed yet again.
#[derive(Debug)]
pub struct LockGuard<T>(Lock<T>);

// As long as T: Send, it's fine to send and share Lock<T> between threads.
// If T was not Send, sending and sharing a Lock<T> would be bad, since you can access T through
// Lock<T>.
unsafe impl<T> Send for Lock<T> where T: Send {}
unsafe impl<T> Sync for Lock<T> where T: Send {}
unsafe impl<T> Sync for LockGuard<T> where T: Send + Sync {}

#[derive(Debug)]
struct State<T> {
    c: UnsafeCell<T>,
    s: semaphore::Semaphore,
}

#[test]
fn bounds() {
    fn check<T: Send>() {}
    check::<LockGuard<u32>>();
}

impl<T> Lock<T> {
    /// Creates a new lock in an unlocked state ready for use.
    pub fn new(t: T) -> Self {
        Self {
            inner: Arc::new(State {
                c: UnsafeCell::new(t),
                s: semaphore::Semaphore::new(1),
            }),
            permit: semaphore::Permit::new(),
        }
    }

    /// Try to acquire the lock.
    ///
    /// If the lock is already held, the current task is notified when it is released.
    pub fn poll_lock(&mut self) -> Async<LockGuard<T>> {
        if let Async::NotReady = self.permit.poll_acquire(&self.inner.s).unwrap_or_else(|_| {
            // The semaphore was closed. but, we never explicitly close it, and we have a
            // handle to it through the Arc, which means that this can never happen.
            unreachable!()
        }) {
            return Async::NotReady;
        }

        // We want to move the acquired permit into the guard,
        // and leave an unacquired one in self.
        let acquired = Self {
            inner: self.inner.clone(),
            permit: ::std::mem::replace(&mut self.permit, semaphore::Permit::new()),
        };
        Async::Ready(LockGuard(acquired))
    }
}

impl<T> Drop for LockGuard<T> {
    fn drop(&mut self) {
        if self.0.permit.is_acquired() {
            self.0.permit.release(&self.0.inner.s);
        } else if ::std::thread::panicking() {
            // A guard _should_ always hold its permit, but if the thread is already panicking,
            // we don't want to generate a panic-while-panicing, since that's just unhelpful!
        } else {
            unreachable!("Permit not held when LockGuard was dropped")
        }
    }
}

impl<T> From<T> for Lock<T> {
    fn from(s: T) -> Self {
        Self::new(s)
    }
}

impl<T> Clone for Lock<T> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
            permit: semaphore::Permit::new(),
        }
    }
}

impl<T> Default for Lock<T>
where
    T: Default,
{
    fn default() -> Self {
        Self::new(T::default())
    }
}

impl<T> Deref for LockGuard<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        assert!(self.0.permit.is_acquired());
        unsafe { &*self.0.inner.c.get() }
    }
}

impl<T> DerefMut for LockGuard<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        assert!(self.0.permit.is_acquired());
        unsafe { &mut *self.0.inner.c.get() }
    }
}

impl<T: fmt::Display> fmt::Display for LockGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}