Files
aho_corasick
ansi_term
arrayvec
atty
backtrace
backtrace_sys
base64
bincode
bitflags
byteorder
bytes
c2_chacha
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
daemon
failure
failure_derive
flexi_logger
fnv
futures
getrandom
glob
hid_io
api
device
module
protocol
hidapi
install_service
iovec
lazy_static
libc
lock_api
log
memchr
memoffset
mio
mio_uds
nanoid
net2
nix
nodrop
num_cpus
num_integer
num_traits
open
parking_lot
parking_lot_core
pem
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
scopeguard
sct
serde
slab
smallvec
spin
stream_cancel
strsim
syn
synstructure
tempfile
textwrap
thread_local
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
unicode_width
unicode_xid
untrusted
vec_map
void
webpki
windows_service
x11
xcb
xkbcommon
yasna
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
use core::fmt::{Debug, Formatter, Result as FmtResult};
use core::mem::replace;

use {Async, AsyncSink, Poll, Sink, StartSend};

/// Sink that clones incoming items and forwards them to two sinks at the same time.
///
/// Backpressure from any downstream sink propagates up, which means that this sink
/// can only process items as fast as its _slowest_ downstream sink.
pub struct Fanout<A: Sink, B: Sink> {
    left: Downstream<A>,
    right: Downstream<B>
}

impl<A: Sink, B: Sink> Fanout<A, B> {
    /// Consumes this combinator, returning the underlying sinks.
    ///
    /// Note that this may discard intermediate state of this combinator,
    /// so care should be taken to avoid losing resources when this is called.
    pub fn into_inner(self) -> (A, B) {
        (self.left.sink, self.right.sink)
    }
}

impl<A: Sink + Debug, B: Sink + Debug> Debug for Fanout<A, B>
    where A::SinkItem: Debug,
          B::SinkItem: Debug
{
    fn fmt(&self, f: &mut Formatter) -> FmtResult {
        f.debug_struct("Fanout")
            .field("left", &self.left)
            .field("right", &self.right)
            .finish()
    }
}

pub fn new<A: Sink, B: Sink>(left: A, right: B) -> Fanout<A, B> {
    Fanout {
        left: Downstream::new(left),
        right: Downstream::new(right)
    }
}

impl<A, B> Sink for Fanout<A, B>
    where A: Sink,
          A::SinkItem: Clone,
          B: Sink<SinkItem=A::SinkItem, SinkError=A::SinkError>
{
    type SinkItem = A::SinkItem;
    type SinkError = A::SinkError;

    fn start_send(
        &mut self, 
        item: Self::SinkItem
    ) -> StartSend<Self::SinkItem, Self::SinkError> {
        // Attempt to complete processing any outstanding requests.
        self.left.keep_flushing()?;
        self.right.keep_flushing()?;
        // Only if both downstream sinks are ready, start sending the next item.
        if self.left.is_ready() && self.right.is_ready() {
            self.left.state = self.left.sink.start_send(item.clone())?;
            self.right.state = self.right.sink.start_send(item)?;
            Ok(AsyncSink::Ready)
        } else {
            Ok(AsyncSink::NotReady(item))
        }
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.poll_complete()?;
        let right_async = self.right.poll_complete()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        let left_async = self.left.close()?;
        let right_async = self.right.close()?;
        // Only if both downstream sinks are ready, signal readiness.
        if left_async.is_ready() && right_async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        } 
    }
}

#[derive(Debug)]
struct Downstream<S: Sink> {
    sink: S,
    state: AsyncSink<S::SinkItem>
}

impl<S: Sink> Downstream<S> {
    fn new(sink: S) -> Self {
        Downstream { sink: sink, state: AsyncSink::Ready }
    }

    fn is_ready(&self) -> bool {
        self.state.is_ready()
    }

    fn keep_flushing(&mut self) -> Result<(), S::SinkError> {
        if let AsyncSink::NotReady(item) = replace(&mut self.state, AsyncSink::Ready) {
            self.state = self.sink.start_send(item)?;
        }
        Ok(())
    }

    fn poll_complete(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        let async = self.sink.poll_complete()?;
        // Only if all values have been sent _and_ the underlying
        // sink is completely flushed, signal readiness.
        if self.state.is_ready() && async.is_ready() {
            Ok(Async::Ready(()))
        } else {
            Ok(Async::NotReady)
        }
    }

    fn close(&mut self) -> Poll<(), S::SinkError> {
        self.keep_flushing()?;
        // If all items have been flushed, initiate close.
        if self.state.is_ready() {
            self.sink.close()
        } else {
            Ok(Async::NotReady)
        }
    }
}