Files
aho_corasick
ansi_term
arrayvec
atty
backtrace
backtrace_sys
base64
bincode
bitflags
byteorder
bytes
c2_chacha
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
daemon
failure
failure_derive
flexi_logger
fnv
futures
getrandom
glob
hid_io
api
device
module
protocol
hidapi
install_service
iovec
lazy_static
libc
lock_api
log
memchr
memoffset
mio
mio_uds
nanoid
net2
nix
nodrop
num_cpus
num_integer
num_traits
open
parking_lot
parking_lot_core
pem
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
scopeguard
sct
serde
slab
smallvec
spin
stream_cancel
strsim
syn
synstructure
tempfile
textwrap
thread_local
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
unicode_width
unicode_xid
untrusted
vec_map
void
webpki
windows_service
x11
xcb
xkbcommon
yasna
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
#[cfg(feature = "rustcrypto_api")]
pub use stream_cipher::generic_array;

pub use ppv_lite86::Machine;
use ppv_lite86::{vec128_storage, ArithOps, BitOps32, LaneWords4, MultiLane, StoreBytes, Vec4};

pub(crate) const BLOCK: usize = 64;
pub(crate) const BLOCK64: u64 = BLOCK as u64;
const LOG2_BUFBLOCKS: u64 = 2;
const BUFBLOCKS: u64 = 1 << LOG2_BUFBLOCKS;
pub(crate) const BUFSZ64: u64 = BLOCK64 * BUFBLOCKS;
pub(crate) const BUFSZ: usize = BUFSZ64 as usize;

#[derive(Clone)]
pub struct ChaCha {
    pub(crate) b: vec128_storage,
    pub(crate) c: vec128_storage,
    pub(crate) d: vec128_storage,
}

#[derive(Clone)]
pub struct State<V> {
    pub(crate) a: V,
    pub(crate) b: V,
    pub(crate) c: V,
    pub(crate) d: V,
}

#[inline(always)]
pub(crate) fn round<V: ArithOps + BitOps32>(mut x: State<V>) -> State<V> {
    x.a += x.b;
    x.d = (x.d ^ x.a).rotate_each_word_right16();
    x.c += x.d;
    x.b = (x.b ^ x.c).rotate_each_word_right20();
    x.a += x.b;
    x.d = (x.d ^ x.a).rotate_each_word_right24();
    x.c += x.d;
    x.b = (x.b ^ x.c).rotate_each_word_right25();
    x
}

#[inline(always)]
pub(crate) fn diagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
    x.b = x.b.shuffle_lane_words3012();
    x.c = x.c.shuffle_lane_words2301();
    x.d = x.d.shuffle_lane_words1230();
    x
}
#[inline(always)]
pub(crate) fn undiagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
    x.b = x.b.shuffle_lane_words1230();
    x.c = x.c.shuffle_lane_words2301();
    x.d = x.d.shuffle_lane_words3012();
    x
}

impl ChaCha {
    #[inline(always)]
    pub fn new(key: &[u8; 32], nonce: &[u8]) -> Self {
        init_chacha(key, nonce)
    }

    #[inline(always)]
    fn pos64<M: Machine>(&self, m: M) -> u64 {
        let d: M::u32x4 = m.unpack(self.d);
        ((d.extract(1) as u64) << 32) | d.extract(0) as u64
    }

    /// Set 64-bit block count, affecting next refill.
    #[inline(always)]
    pub(crate) fn seek64<M: Machine>(&mut self, m: M, blockct: u64) {
        let d: M::u32x4 = m.unpack(self.d);
        self.d = d
            .insert((blockct >> 32) as u32, 1)
            .insert(blockct as u32, 0)
            .into();
    }

    /// Set 32-bit block count, affecting next refill.
    #[inline(always)]
    pub(crate) fn seek32<M: Machine>(&mut self, m: M, blockct: u32) {
        let d: M::u32x4 = m.unpack(self.d);
        self.d = d.insert(blockct, 0).into();
    }

    /// Produce output from the current state.
    #[inline(always)]
    fn output_narrow<M: Machine>(&mut self, m: M, x: State<M::u32x4>, out: &mut [u8; BLOCK]) {
        let k = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
        (x.a + k).write_le(&mut out[0..16]);
        (x.b + m.unpack(self.b)).write_le(&mut out[16..32]);
        (x.c + m.unpack(self.c)).write_le(&mut out[32..48]);
        (x.d + m.unpack(self.d)).write_le(&mut out[48..64]);
    }

    /// Add one to the block counter (no overflow check).
    #[inline(always)]
    fn inc_block_ct<M: Machine>(&mut self, m: M) {
        let mut pos = self.pos64(m);
        let d0: M::u32x4 = m.unpack(self.d);
        pos += 1;
        let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
        self.d = d1.into();
    }

    /// Produce 4 blocks of output, advancing the state
    #[inline(always)]
    pub fn refill4(&mut self, drounds: u32, out: &mut [u8; BUFSZ]) {
        refill_wide(self, drounds, out)
    }

    /// Produce a block of output, advancing the state
    #[inline(always)]
    pub fn refill(&mut self, drounds: u32, out: &mut [u8; BLOCK]) {
        refill_narrow(self, drounds, out)
    }

    #[inline(always)]
    pub(crate) fn refill_rounds(&mut self, drounds: u32) -> State<vec128_storage> {
        refill_narrow_rounds(self, drounds)
    }

    #[inline(always)]
    pub fn set_stream_param(&mut self, param: u32, value: u64) {
        set_stream_param(self, param, value)
    }

    #[inline(always)]
    pub fn get_stream_param(&self, param: u32) -> u64 {
        get_stream_param(self, param)
    }
}

#[inline(always)]
fn refill_wide_impl<Mach: Machine>(
    m: Mach,
    state: &mut ChaCha,
    drounds: u32,
    out: &mut [u8; BUFSZ],
) {
    let k = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
    let mut pos = state.pos64(m);
    let d0: Mach::u32x4 = m.unpack(state.d);
    pos += 1;
    let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
    pos += 1;
    let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
    pos += 1;
    let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);

    let b = m.unpack(state.b);
    let c = m.unpack(state.c);
    let mut x = State {
        a: Mach::u32x4x4::from_lanes([k, k, k, k]),
        b: Mach::u32x4x4::from_lanes([b, b, b, b]),
        c: Mach::u32x4x4::from_lanes([c, c, c, c]),
        d: m.unpack(Mach::u32x4x4::from_lanes([d0, d1, d2, d3]).into()),
    };
    for _ in 0..drounds {
        x = round(x);
        x = undiagonalize(round(diagonalize(x)));
    }
    let mut pos = state.pos64(m);
    let d0: Mach::u32x4 = m.unpack(state.d);
    pos += 1;
    let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
    pos += 1;
    let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
    pos += 1;
    let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
    pos += 1;
    let d4 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);

    let (a, b, c, d) = (
        x.a.to_lanes(),
        x.b.to_lanes(),
        x.c.to_lanes(),
        x.d.to_lanes(),
    );
    let sb = m.unpack(state.b);
    let sc = m.unpack(state.c);
    let sd = [m.unpack(state.d), d1, d2, d3];
    state.d = d4.into();
    let mut words = out.chunks_exact_mut(16);
    for ((((&a, &b), &c), &d), &sd) in a.iter().zip(&b).zip(&c).zip(&d).zip(&sd) {
        (a + k).write_le(words.next().unwrap());
        (b + sb).write_le(words.next().unwrap());
        (c + sc).write_le(words.next().unwrap());
        (d + sd).write_le(words.next().unwrap());
    }
}

dispatch!(m, Mach, {
    fn refill_wide(state: &mut ChaCha, drounds: u32, out: &mut [u8; BUFSZ]) {
        refill_wide_impl(m, state, drounds, out);
    }
});

/// Refill the buffer from a single-block round, updating the block count.
dispatch_light128!(m, Mach, {
    fn refill_narrow(state: &mut ChaCha, drounds: u32, out: &mut [u8; BLOCK]) {
        let x = refill_narrow_rounds(state, drounds);
        let x = State {
            a: m.unpack(x.a),
            b: m.unpack(x.b),
            c: m.unpack(x.c),
            d: m.unpack(x.d),
        };
        state.output_narrow(m, x, out);
        state.inc_block_ct(m);
    }
});

/// Single-block, rounds-only; shared by try_apply_keystream for tails shorter than BUFSZ
/// and XChaCha's setup step.
dispatch!(m, Mach, {
    fn refill_narrow_rounds(state: &mut ChaCha, drounds: u32) -> State<vec128_storage> {
        let k: Mach::u32x4 = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
        let mut x = State {
            a: k,
            b: m.unpack(state.b),
            c: m.unpack(state.c),
            d: m.unpack(state.d),
        };
        for _ in 0..drounds {
            x = round(x);
            x = undiagonalize(round(diagonalize(x)));
        }
        State {
            a: x.a.into(),
            b: x.b.into(),
            c: x.c.into(),
            d: x.d.into(),
        }
    }
});

dispatch_light128!(m, Mach, {
    fn set_stream_param(state: &mut ChaCha, param: u32, value: u64) {
        let d: Mach::u32x4 = m.unpack(state.d);
        state.d = d
            .insert((value >> 32) as u32, (param << 1) | 1)
            .insert(value as u32, param << 1)
            .into();
    }
});

dispatch_light128!(m, Mach, {
    fn get_stream_param(state: &ChaCha, param: u32) -> u64 {
        let d: Mach::u32x4 = m.unpack(state.d);
        ((d.extract((param << 1) | 1) as u64) << 32) | d.extract(param << 1) as u64
    }
});

fn read_u32le(xs: &[u8]) -> u32 {
    assert_eq!(xs.len(), 4);
    u32::from(xs[0]) | (u32::from(xs[1]) << 8) | (u32::from(xs[2]) << 16) | (u32::from(xs[3]) << 24)
}

dispatch_light128!(m, Mach, {
    fn init_chacha(key: &[u8; 32], nonce: &[u8]) -> ChaCha {
        let ctr_nonce = [
            0,
            if nonce.len() == 12 {
                read_u32le(&nonce[0..4])
            } else {
                0
            },
            read_u32le(&nonce[nonce.len() - 8..nonce.len() - 4]),
            read_u32le(&nonce[nonce.len() - 4..]),
        ];
        let key0: Mach::u32x4 = m.read_le(&key[..16]);
        let key1: Mach::u32x4 = m.read_le(&key[16..]);
        ChaCha {
            b: key0.into(),
            c: key1.into(),
            d: ctr_nonce.into(),
        }
    }
});

dispatch_light128!(m, Mach, {
    fn init_chacha_x(key: &[u8; 32], nonce: &[u8; 24], rounds: u32) -> ChaCha {
        let key0: Mach::u32x4 = m.read_le(&key[..16]);
        let key1: Mach::u32x4 = m.read_le(&key[16..]);
        let nonce0: Mach::u32x4 = m.read_le(&nonce[..16]);
        let mut state = ChaCha {
            b: key0.into(),
            c: key1.into(),
            d: nonce0.into(),
        };
        let x = refill_narrow_rounds(&mut state, rounds);
        let ctr_nonce1 = [0, 0, read_u32le(&nonce[16..20]), read_u32le(&nonce[20..24])];
        state.b = x.a;
        state.c = x.d;
        state.d = ctr_nonce1.into();
        state
    }
});