Files
aho_corasick
ansi_term
arrayvec
atty
backtrace
backtrace_sys
base64
bincode
bitflags
byteorder
bytes
c2_chacha
capnp
capnp_futures
capnp_rpc
cfg_if
chrono
clap
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
ctrlc
daemon
failure
failure_derive
flexi_logger
fnv
futures
getrandom
glob
hid_io
api
device
module
protocol
hidapi
install_service
iovec
lazy_static
libc
lock_api
log
memchr
memoffset
mio
mio_uds
nanoid
net2
nix
nodrop
num_cpus
num_integer
num_traits
open
parking_lot
parking_lot_core
pem
ppv_lite86
proc_macro2
quote
rand
rand_chacha
rand_core
rand_hc
rand_isaac
rand_jitter
rand_os
rand_pcg
rand_xorshift
rcgen
regex
regex_syntax
remove_dir_all
ring
rustc_demangle
rustls
scoped_tls
scopeguard
sct
serde
slab
smallvec
spin
stream_cancel
strsim
syn
synstructure
tempfile
textwrap
thread_local
time
tokio
tokio_codec
tokio_core
tokio_current_thread
tokio_executor
tokio_fs
tokio_io
tokio_reactor
tokio_rustls
tokio_sync
tokio_tcp
tokio_threadpool
tokio_timer
tokio_udp
tokio_uds
unicode_width
unicode_xid
untrusted
vec_map
void
webpki
windows_service
x11
xcb
xkbcommon
yasna
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Gamma and derived distributions.
#![allow(deprecated)]

use self::GammaRepr::*;
use self::ChiSquaredRepr::*;

use crate::Rng;
use crate::distributions::normal::StandardNormal;
use crate::distributions::{Distribution, Exp, Open01};

/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) =  x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
///       Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
///       (September 2000), 363-372.
///       DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Gamma {
    repr: GammaRepr,
}

#[derive(Clone, Copy, Debug)]
enum GammaRepr {
    Large(GammaLargeShape),
    One(Exp),
    Small(GammaSmallShape)
}

// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.

/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaSmallShape {
    inv_shape: f64,
    large_shape: GammaLargeShape
}

/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
struct GammaLargeShape {
    scale: f64,
    c: f64,
    d: f64
}

impl Gamma {
    /// Construct an object representing the `Gamma(shape, scale)`
    /// distribution.
    ///
    /// Panics if `shape <= 0` or `scale <= 0`.
    #[inline]
    pub fn new(shape: f64, scale: f64) -> Gamma {
        assert!(shape > 0.0, "Gamma::new called with shape <= 0");
        assert!(scale > 0.0, "Gamma::new called with scale <= 0");

        let repr = if shape == 1.0 {
            One(Exp::new(1.0 / scale))
        } else if shape < 1.0 {
            Small(GammaSmallShape::new_raw(shape, scale))
        } else {
            Large(GammaLargeShape::new_raw(shape, scale))
        };
        Gamma { repr }
    }
}

impl GammaSmallShape {
    fn new_raw(shape: f64, scale: f64) -> GammaSmallShape {
        GammaSmallShape {
            inv_shape: 1. / shape,
            large_shape: GammaLargeShape::new_raw(shape + 1.0, scale)
        }
    }
}

impl GammaLargeShape {
    fn new_raw(shape: f64, scale: f64) -> GammaLargeShape {
        let d = shape - 1. / 3.;
        GammaLargeShape {
            scale,
            c: 1. / (9. * d).sqrt(),
            d
        }
    }
}

impl Distribution<f64> for Gamma {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        match self.repr {
            Small(ref g) => g.sample(rng),
            One(ref g) => g.sample(rng),
            Large(ref g) => g.sample(rng),
        }
    }
}
impl Distribution<f64> for GammaSmallShape {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        let u: f64 = rng.sample(Open01);

        self.large_shape.sample(rng) * u.powf(self.inv_shape)
    }
}
impl Distribution<f64> for GammaLargeShape {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        loop {
            let x = rng.sample(StandardNormal);
            let v_cbrt = 1.0 + self.c * x;
            if v_cbrt <= 0.0 { // a^3 <= 0 iff a <= 0
                continue
            }

            let v = v_cbrt * v_cbrt * v_cbrt;
            let u: f64 = rng.sample(Open01);

            let x_sqr = x * x;
            if u < 1.0 - 0.0331 * x_sqr * x_sqr ||
                u.ln() < 0.5 * x_sqr + self.d * (1.0 - v + v.ln()) {
                return self.d * v * self.scale
            }
        }
    }
}

/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct ChiSquared {
    repr: ChiSquaredRepr,
}

#[derive(Clone, Copy, Debug)]
enum ChiSquaredRepr {
    // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
    // e.g. when alpha = 1/2 as it would be for this case, so special-
    // casing and using the definition of N(0,1)^2 is faster.
    DoFExactlyOne,
    DoFAnythingElse(Gamma),
}

impl ChiSquared {
    /// Create a new chi-squared distribution with degrees-of-freedom
    /// `k`. Panics if `k < 0`.
    pub fn new(k: f64) -> ChiSquared {
        let repr = if k == 1.0 {
            DoFExactlyOne
        } else {
            assert!(k > 0.0, "ChiSquared::new called with `k` < 0");
            DoFAnythingElse(Gamma::new(0.5 * k, 2.0))
        };
        ChiSquared { repr }
    }
}
impl Distribution<f64> for ChiSquared {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        match self.repr {
            DoFExactlyOne => {
                // k == 1 => N(0,1)^2
                let norm = rng.sample(StandardNormal);
                norm * norm
            }
            DoFAnythingElse(ref g) => g.sample(rng)
        }
    }
}

/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct FisherF {
    numer: ChiSquared,
    denom: ChiSquared,
    // denom_dof / numer_dof so that this can just be a straight
    // multiplication, rather than a division.
    dof_ratio: f64,
}

impl FisherF {
    /// Create a new `FisherF` distribution, with the given
    /// parameter. Panics if either `m` or `n` are not positive.
    pub fn new(m: f64, n: f64) -> FisherF {
        assert!(m > 0.0, "FisherF::new called with `m < 0`");
        assert!(n > 0.0, "FisherF::new called with `n < 0`");

        FisherF {
            numer: ChiSquared::new(m),
            denom: ChiSquared::new(n),
            dof_ratio: n / m
        }
    }
}
impl Distribution<f64> for FisherF {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
    }
}

/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct StudentT {
    chi: ChiSquared,
    dof: f64
}

impl StudentT {
    /// Create a new Student t distribution with `n` degrees of
    /// freedom. Panics if `n <= 0`.
    pub fn new(n: f64) -> StudentT {
        assert!(n > 0.0, "StudentT::new called with `n <= 0`");
        StudentT {
            chi: ChiSquared::new(n),
            dof: n
        }
    }
}
impl Distribution<f64> for StudentT {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        let norm = rng.sample(StandardNormal);
        norm * (self.dof / self.chi.sample(rng)).sqrt()
    }
}

/// The Beta distribution with shape parameters `alpha` and `beta`.
#[deprecated(since="0.7.0", note="moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Beta {
    gamma_a: Gamma,
    gamma_b: Gamma,
}

impl Beta {
    /// Construct an object representing the `Beta(alpha, beta)`
    /// distribution.
    ///
    /// Panics if `shape <= 0` or `scale <= 0`.
    pub fn new(alpha: f64, beta: f64) -> Beta {
        assert!((alpha > 0.) & (beta > 0.));
        Beta {
            gamma_a: Gamma::new(alpha, 1.),
            gamma_b: Gamma::new(beta, 1.),
        }
    }
}

impl Distribution<f64> for Beta {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        let x = self.gamma_a.sample(rng);
        let y = self.gamma_b.sample(rng);
        x / (x + y)
    }
}

#[cfg(test)]
mod test {
    use crate::distributions::Distribution;
    use super::{Beta, ChiSquared, StudentT, FisherF};

    const N: u32 = 100;

    #[test]
    fn test_chi_squared_one() {
        let chi = ChiSquared::new(1.0);
        let mut rng = crate::test::rng(201);
        for _ in 0..N {
            chi.sample(&mut rng);
        }
    }
    #[test]
    fn test_chi_squared_small() {
        let chi = ChiSquared::new(0.5);
        let mut rng = crate::test::rng(202);
        for _ in 0..N {
            chi.sample(&mut rng);
        }
    }
    #[test]
    fn test_chi_squared_large() {
        let chi = ChiSquared::new(30.0);
        let mut rng = crate::test::rng(203);
        for _ in 0..N {
            chi.sample(&mut rng);
        }
    }
    #[test]
    #[should_panic]
    fn test_chi_squared_invalid_dof() {
        ChiSquared::new(-1.0);
    }

    #[test]
    fn test_f() {
        let f = FisherF::new(2.0, 32.0);
        let mut rng = crate::test::rng(204);
        for _ in 0..N {
            f.sample(&mut rng);
        }
    }

    #[test]
    fn test_t() {
        let t = StudentT::new(11.0);
        let mut rng = crate::test::rng(205);
        for _ in 0..N {
            t.sample(&mut rng);
        }
    }

    #[test]
    fn test_beta() {
        let beta = Beta::new(1.0, 2.0);
        let mut rng = crate::test::rng(201);
        for _ in 0..N {
            beta.sample(&mut rng);
        }
    }

    #[test]
    #[should_panic]
    fn test_beta_invalid_dof() {
        Beta::new(0., 0.);
    }
}