Struct tokio::net::TcpStream[][src]

pub struct TcpStream { /* fields omitted */ }

A TCP stream between a local and a remote socket.

A TCP stream can either be created by connecting to an endpoint, via the connect method, or by accepting a connection from a listener.

Reading and writing to a TcpStream is usually done using the convenience methods found on the AsyncReadExt and AsyncWriteExt traits. Examples import these traits through the prelude.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Write some data.
    stream.write_all(b"hello world!").await?;

    Ok(())
}

The write_all method is defined on the AsyncWriteExt trait.

Implementations

impl TcpStream[src]

pub async fn connect<A: ToSocketAddrs>(addr: A) -> Result<TcpStream>[src]

Opens a TCP connection to a remote host.

addr is an address of the remote host. Anything which implements the ToSocketAddrs trait can be supplied as the address. Note that strings only implement this trait when the net feature is enabled, as strings may contain domain names that need to be resolved.

If addr yields multiple addresses, connect will be attempted with each of the addresses until a connection is successful. If none of the addresses result in a successful connection, the error returned from the last connection attempt (the last address) is returned.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Write some data.
    stream.write_all(b"hello world!").await?;

    Ok(())
}

The write_all method is defined on the AsyncWriteExt trait.

pub fn from_std(stream: TcpStream) -> Result<TcpStream>[src]

Creates new TcpStream from a std::net::TcpStream.

This function is intended to be used to wrap a TCP stream from the standard library in the Tokio equivalent. The conversion assumes nothing about the underlying stream; it is left up to the user to set it in non-blocking mode.

Examples

use std::error::Error;
use tokio::net::TcpStream;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    let std_stream = std::net::TcpStream::connect("127.0.0.1:34254")?;
    std_stream.set_nonblocking(true)?;
    let stream = TcpStream::from_std(std_stream)?;
    Ok(())
}

Panics

This function panics if thread-local runtime is not set.

The runtime is usually set implicitly when this function is called from a future driven by a tokio runtime, otherwise runtime can be set explicitly with Runtime::enter function.

pub fn into_std(self) -> Result<TcpStream>[src]

Turn a tokio::net::TcpStream into a std::net::TcpStream.

The returned std::net::TcpStream will have nonblocking mode set as true. Use set_nonblocking to change the blocking mode if needed.

Examples

use std::error::Error;
use std::io::Read;
use tokio::net::TcpListener;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    let mut data = [0u8; 12];
    let listener = TcpListener::bind("127.0.0.1:34254").await?;
    let (tokio_tcp_stream, _) = listener.accept().await?;
    let mut std_tcp_stream = tokio_tcp_stream.into_std()?;
    std_tcp_stream.set_nonblocking(false)?;
    std_tcp_stream.read_exact(&mut data)?;
    Ok(())
}

pub fn local_addr(&self) -> Result<SocketAddr>[src]

Returns the local address that this stream is bound to.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.local_addr()?);

pub fn peer_addr(&self) -> Result<SocketAddr>[src]

Returns the remote address that this stream is connected to.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.peer_addr()?);

pub fn poll_peek(
    &self,
    cx: &mut Context<'_>,
    buf: &mut [u8]
) -> Poll<Result<usize>>
[src]

Attempts to receive data on the socket, without removing that data from the queue, registering the current task for wakeup if data is not yet available.

Return value

The function returns:

  • Poll::Pending if data is not yet available.
  • Poll::Ready(Ok(n)) if data is available. n is the number of bytes peeked.
  • Poll::Ready(Err(e)) if an error is encountered.

Errors

This function may encounter any standard I/O error except WouldBlock.

Examples

use tokio::io;
use tokio::net::TcpStream;

use futures::future::poll_fn;

#[tokio::main]
async fn main() -> io::Result<()> {
    let stream = TcpStream::connect("127.0.0.1:8000").await?;
    let mut buf = [0; 10];

    poll_fn(|cx| {
        stream.poll_peek(cx, &mut buf)
    }).await?;

    Ok(())
}

pub async fn ready(&self, interest: Interest) -> Result<Ready>[src]

Wait for any of the requested ready states.

This function is usually paired with try_read() or try_write(). It can be used to concurrently read / write to the same socket on a single task without splitting the socket.

Examples

Concurrently read and write to the stream on the same task without splitting.

use tokio::io::Interest;
use tokio::net::TcpStream;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    loop {
        let ready = stream.ready(Interest::READABLE | Interest::WRITABLE).await?;

        if ready.is_readable() {
            // The buffer is **not** included in the async task and will only exist
            // on the stack.
            let mut data = [0; 1024];
            let n = stream.try_read(&mut data[..]).unwrap();

            println!("GOT {:?}", &data[..n]);
        }

        if ready.is_writable() {
            // Write some data
            stream.try_write(b"hello world").unwrap();
        }
    }
}

pub async fn readable(&self) -> Result<()>[src]

Wait for the socket to become readable.

This function is equivalent to ready(Interest::READABLE) is usually paired with try_read().

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::io;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    let mut msg = vec![0; 1024];

    loop {
        // Wait for the socket to be readable
        stream.readable().await?;

        // Try to read data, this may still fail with `WouldBlock`
        // if the readiness event is a false positive.
        match stream.try_read(&mut msg) {
            Ok(n) => {
                msg.truncate(n);
                break;
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                continue;
            }
            Err(e) => {
                return Err(e.into());
            }
        }
    }

    println!("GOT = {:?}", msg);
    Ok(())
}

pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<Result<()>>[src]

Polls for read readiness.

This function is intended for cases where creating and pinning a future via readable is not feasible. Where possible, using readable is preferred, as this supports polling from multiple tasks at once.

pub fn try_read(&self, buf: &mut [u8]) -> Result<usize>[src]

Try to read data from the stream into the provided buffer, returning how many bytes were read.

Receives any pending data from the socket but does not wait for new data to arrive. On success, returns the number of bytes read. Because try_read() is non-blocking, the buffer does not have to be stored by the async task and can exist entirely on the stack.

Usually, readable() or ready() is used with this function.

Return

If data is successfully read, Ok(n) is returned, where n is the number of bytes read. Ok(n) indicates the stream’s read half is closed and will no longer yield data. If the stream is not ready to read data Err(io::ErrorKind::WouldBlock) is returned.

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::io;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    loop {
        // Wait for the socket to be readable
        stream.readable().await?;

        // Creating the buffer **after** the `await` prevents it from
        // being stored in the async task.
        let mut buf = [0; 4096];

        // Try to read data, this may still fail with `WouldBlock`
        // if the readiness event is a false positive.
        match stream.try_read(&mut buf) {
            Ok(0) => break,
            Ok(n) => {
                println!("read {} bytes", n);
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                continue;
            }
            Err(e) => {
                return Err(e.into());
            }
        }
    }

    Ok(())
}

pub async fn writable(&self) -> Result<()>[src]

Wait for the socket to become writable.

This function is equivalent to ready(Interest::WRITABLE) is usually paired with try_write().

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::io;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    loop {
        // Wait for the socket to be writable
        stream.writable().await?;

        // Try to write data, this may still fail with `WouldBlock`
        // if the readiness event is a false positive.
        match stream.try_write(b"hello world") {
            Ok(n) => {
                break;
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                continue;
            }
            Err(e) => {
                return Err(e.into());
            }
        }
    }

    Ok(())
}

pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<Result<()>>[src]

Polls for write readiness.

This function is intended for cases where creating and pinning a future via writable is not feasible. Where possible, using writable is preferred, as this supports polling from multiple tasks at once.

pub fn try_write(&self, buf: &[u8]) -> Result<usize>[src]

Try to write a buffer to the stream, returning how many bytes were written.

The function will attempt to write the entire contents of buf, but only part of the buffer may be written.

This function is usually paired with writable().

Return

If data is successfully written, Ok(n) is returned, where n is the number of bytes written. If the stream is not ready to write data, Err(io::ErrorKind::WouldBlock) is returned.

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::io;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    loop {
        // Wait for the socket to be writable
        stream.writable().await?;

        // Try to write data, this may still fail with `WouldBlock`
        // if the readiness event is a false positive.
        match stream.try_write(b"hello world") {
            Ok(n) => {
                break;
            }
            Err(ref e) if e.kind() == io::ErrorKind::WouldBlock => {
                continue;
            }
            Err(e) => {
                return Err(e.into());
            }
        }
    }

    Ok(())
}

pub async fn peek(&self, buf: &mut [u8]) -> Result<usize>[src]

Receives data on the socket from the remote address to which it is connected, without removing that data from the queue. On success, returns the number of bytes peeked.

Successive calls return the same data. This is accomplished by passing MSG_PEEK as a flag to the underlying recv system call.

Examples

use tokio::net::TcpStream;
use tokio::prelude::*;
use std::error::Error;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let mut stream = TcpStream::connect("127.0.0.1:8080").await?;

    let mut b1 = [0; 10];
    let mut b2 = [0; 10];

    // Peek at the data
    let n = stream.peek(&mut b1).await?;

    // Read the data
    assert_eq!(n, stream.read(&mut b2[..n]).await?);
    assert_eq!(&b1[..n], &b2[..n]);

    Ok(())
}

The read method is defined on the AsyncReadExt trait.

pub fn shutdown(&self, how: Shutdown) -> Result<()>[src]

Shuts down the read, write, or both halves of this connection.

This function will cause all pending and future I/O on the specified portions to return immediately with an appropriate value (see the documentation of Shutdown).

Examples

use tokio::net::TcpStream;
use std::error::Error;
use std::net::Shutdown;

#[tokio::main]
async fn main() -> Result<(), Box<dyn Error>> {
    // Connect to a peer
    let stream = TcpStream::connect("127.0.0.1:8080").await?;

    // Shutdown the stream
    stream.shutdown(Shutdown::Write)?;

    Ok(())
}

pub fn nodelay(&self) -> Result<bool>[src]

Gets the value of the TCP_NODELAY option on this socket.

For more information about this option, see set_nodelay.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.nodelay()?);

pub fn set_nodelay(&self, nodelay: bool) -> Result<()>[src]

Sets the value of the TCP_NODELAY option on this socket.

If set, this option disables the Nagle algorithm. This means that segments are always sent as soon as possible, even if there is only a small amount of data. When not set, data is buffered until there is a sufficient amount to send out, thereby avoiding the frequent sending of small packets.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_nodelay(true)?;

pub fn linger(&self) -> Result<Option<Duration>>[src]

Reads the linger duration for this socket by getting the SO_LINGER option.

For more information about this option, see set_linger.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.linger()?);

pub fn set_linger(&self, dur: Option<Duration>) -> Result<()>[src]

Sets the linger duration of this socket by setting the SO_LINGER option.

This option controls the action taken when a stream has unsent messages and the stream is closed. If SO_LINGER is set, the system shall block the process until it can transmit the data or until the time expires.

If SO_LINGER is not specified, and the stream is closed, the system handles the call in a way that allows the process to continue as quickly as possible.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_linger(None)?;

pub fn ttl(&self) -> Result<u32>[src]

Gets the value of the IP_TTL option for this socket.

For more information about this option, see set_ttl.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

println!("{:?}", stream.ttl()?);

pub fn set_ttl(&self, ttl: u32) -> Result<()>[src]

Sets the value for the IP_TTL option on this socket.

This value sets the time-to-live field that is used in every packet sent from this socket.

Examples

use tokio::net::TcpStream;

let stream = TcpStream::connect("127.0.0.1:8080").await?;

stream.set_ttl(123)?;

pub fn split<'a>(&'a mut self) -> (ReadHalf<'a>, WriteHalf<'a>)[src]

Splits a TcpStream into a read half and a write half, which can be used to read and write the stream concurrently.

This method is more efficient than into_split, but the halves cannot be moved into independently spawned tasks.

pub fn into_split(self) -> (OwnedReadHalf, OwnedWriteHalf)[src]

Splits a TcpStream into a read half and a write half, which can be used to read and write the stream concurrently.

Unlike split, the owned halves can be moved to separate tasks, however this comes at the cost of a heap allocation.

Note: Dropping the write half will shut down the write half of the TCP stream. This is equivalent to calling shutdown(Write) on the TcpStream.

Trait Implementations

impl AsRawFd for TcpStream[src]

impl AsRef<TcpStream> for ReadHalf<'_>[src]

impl AsRef<TcpStream> for WriteHalf<'_>[src]

impl AsRef<TcpStream> for OwnedReadHalf[src]

impl AsRef<TcpStream> for OwnedWriteHalf[src]

impl AsyncRead for TcpStream[src]

impl AsyncWrite for TcpStream[src]

impl Debug for TcpStream[src]

impl TryFrom<TcpStream> for TcpStream[src]

type Error = Error

The type returned in the event of a conversion error.

fn try_from(stream: TcpStream) -> Result<Self, Self::Error>[src]

Consumes stream, returning the tokio I/O object.

This is equivalent to TcpStream::from_std(stream).

Auto Trait Implementations

impl !RefUnwindSafe for TcpStream

impl Send for TcpStream

impl Sync for TcpStream

impl Unpin for TcpStream

impl !UnwindSafe for TcpStream

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.