Struct typenum::int::NInt[][src]

pub struct NInt<U: Unsigned + NonZero> { /* fields omitted */ }

Type-level signed integers with negative sign.

Implementations

impl<U: Unsigned + NonZero> NInt<U>[src]

pub fn new() -> NInt<U>[src]

Instantiates a singleton representing this strictly negative integer.

Trait Implementations

impl<U: Unsigned + NonZero> Abs for NInt<U>[src]

type Output = PInt<U>

The absolute value.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for NInt<Ul> where
    Ul: Add<Ur>,
    <Ul as Add<Ur>>::Output: Unsigned + NonZero
[src]

N(Ul) + N(Ur) = N(Ul + Ur)

type Output = NInt<<Ul as Add<Ur>>::Output>

The resulting type after applying the + operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<NInt<Ur>> for PInt<Ul> where
    Ul: Cmp<Ur> + PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>, 
[src]

P(Ul) + N(Ur): We resolve this with our PrivateAdd

type Output = <Ul as PrivateIntegerAdd<<Ul as Cmp<Ur>>::Output, Ur>>::Output

The resulting type after applying the + operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Add<PInt<Ur>> for NInt<Ul> where
    Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>, 
[src]

N(Ul) + P(Ur): We resolve this with our PrivateAdd

type Output = <Ur as PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>>::Output

The resulting type after applying the + operator.

impl<U: Unsigned + NonZero> Add<Z0> for NInt<U>[src]

NInt + Z0 = NInt

type Output = NInt<U>

The resulting type after applying the + operator.

impl<U: Clone + Unsigned + NonZero> Clone for NInt<U>[src]

impl<P: Unsigned + NonZero, N: Unsigned + NonZero> Cmp<NInt<N>> for PInt<P>[src]

X > - Y

type Output = Greater

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<Nl: Unsigned + NonZero, Nr: Cmp<Nl> + Unsigned + NonZero> Cmp<NInt<Nr>> for NInt<Nl>[src]

-X <==> -Y

type Output = <Nr as Cmp<Nl>>::Output

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<U: Unsigned + NonZero> Cmp<NInt<U>> for Z0[src]

0 > -X

type Output = Greater

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<P: Unsigned + NonZero, N: Unsigned + NonZero> Cmp<PInt<P>> for NInt<N>[src]

-X < Y

type Output = Less

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<U: Unsigned + NonZero> Cmp<Z0> for NInt<U>[src]

-X < 0

type Output = Less

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<U: Copy + Unsigned + NonZero> Copy for NInt<U>[src]

impl<U: Debug + Unsigned + NonZero> Debug for NInt<U>[src]

impl<U: Default + Unsigned + NonZero> Default for NInt<U>[src]

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for PInt<Ul> where
    Ul: Cmp<Ur>,
    PInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>, 
[src]

$A<Ul> / $B<Ur> = $R<Ul / Ur>

type Output = <PInt<Ul> as PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>>::Output

The resulting type after applying the / operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<NInt<Ur>> for NInt<Ul> where
    Ul: Cmp<Ur>,
    NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>, 
[src]

$A<Ul> / $B<Ur> = $R<Ul / Ur>

type Output = <NInt<Ul> as PrivateDivInt<<Ul as Cmp<Ur>>::Output, NInt<Ur>>>::Output

The resulting type after applying the / operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Div<PInt<Ur>> for NInt<Ul> where
    Ul: Cmp<Ur>,
    NInt<Ul>: PrivateDivInt<<Ul as Cmp<Ur>>::Output, PInt<Ur>>, 
[src]

$A<Ul> / $B<Ur> = $R<Ul / Ur>

type Output = <NInt<Ul> as PrivateDivInt<<Ul as Cmp<Ur>>::Output, PInt<Ur>>>::Output

The resulting type after applying the / operator.

impl<U: Eq + Unsigned + NonZero> Eq for NInt<U>[src]

impl<U> Gcd<NInt<U>> for Z0 where
    U: Unsigned + NonZero
[src]

type Output = PInt<U>

The greatest common divisor.

impl<U1, U2> Gcd<NInt<U2>> for PInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero
[src]

type Output = PInt<Gcf<U1, U2>>

The greatest common divisor.

impl<U1, U2> Gcd<NInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero
[src]

type Output = PInt<Gcf<U1, U2>>

The greatest common divisor.

impl<U1, U2> Gcd<PInt<U2>> for NInt<U1> where
    U1: Unsigned + NonZero + Gcd<U2>,
    U2: Unsigned + NonZero,
    Gcf<U1, U2>: Unsigned + NonZero
[src]

type Output = PInt<Gcf<U1, U2>>

The greatest common divisor.

impl<U> Gcd<Z0> for NInt<U> where
    U: Unsigned + NonZero
[src]

type Output = PInt<U>

The greatest common divisor.

impl<U: Hash + Unsigned + NonZero> Hash for NInt<U>[src]

impl<U: Unsigned + NonZero> Integer for NInt<U>[src]

impl<U> Max<NInt<U>> for Z0 where
    U: Unsigned + NonZero
[src]

type Output = Z0

The type of the maximum of Self and Rhs

impl<Ul, Ur> Max<NInt<Ur>> for PInt<Ul> where
    Ul: Unsigned + NonZero,
    Ur: Unsigned + NonZero
[src]

type Output = PInt<Ul>

The type of the maximum of Self and Rhs

impl<Ul, Ur> Max<NInt<Ur>> for NInt<Ul> where
    Ul: Unsigned + NonZero + Min<Ur>,
    Ur: Unsigned + NonZero,
    Minimum<Ul, Ur>: Unsigned + NonZero
[src]

type Output = NInt<Minimum<Ul, Ur>>

The type of the maximum of Self and Rhs

impl<Ul, Ur> Max<PInt<Ur>> for NInt<Ul> where
    Ul: Unsigned + NonZero,
    Ur: Unsigned + NonZero
[src]

type Output = PInt<Ur>

The type of the maximum of Self and Rhs

impl<U> Max<Z0> for NInt<U> where
    U: Unsigned + NonZero
[src]

type Output = Z0

The type of the maximum of Self and Rhs

impl<U> Min<NInt<U>> for Z0 where
    U: Unsigned + NonZero
[src]

type Output = NInt<U>

The type of the minimum of Self and Rhs

impl<Ul, Ur> Min<NInt<Ur>> for PInt<Ul> where
    Ul: Unsigned + NonZero,
    Ur: Unsigned + NonZero
[src]

type Output = NInt<Ur>

The type of the minimum of Self and Rhs

impl<Ul, Ur> Min<NInt<Ur>> for NInt<Ul> where
    Ul: Unsigned + NonZero + Max<Ur>,
    Ur: Unsigned + NonZero,
    Maximum<Ul, Ur>: Unsigned + NonZero
[src]

type Output = NInt<Maximum<Ul, Ur>>

The type of the minimum of Self and Rhs

impl<Ul, Ur> Min<PInt<Ur>> for NInt<Ul> where
    Ul: Unsigned + NonZero,
    Ur: Unsigned + NonZero
[src]

type Output = NInt<Ul>

The type of the minimum of Self and Rhs

impl<U> Min<Z0> for NInt<U> where
    U: Unsigned + NonZero
[src]

type Output = NInt<U>

The type of the minimum of Self and Rhs

impl<U> Mul<ATerm> for NInt<U> where
    U: Unsigned + NonZero
[src]

type Output = ATerm

The resulting type after applying the * operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for NInt<Ul> where
    Ul: Mul<Ur>,
    <Ul as Mul<Ur>>::Output: Unsigned + NonZero
[src]

N(Ul) * N(Ur) = P(Ul * Ur)

type Output = PInt<<Ul as Mul<Ur>>::Output>

The resulting type after applying the * operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<NInt<Ur>> for PInt<Ul> where
    Ul: Mul<Ur>,
    <Ul as Mul<Ur>>::Output: Unsigned + NonZero
[src]

P(Ul) * N(Ur) = N(Ul * Ur)

type Output = NInt<<Ul as Mul<Ur>>::Output>

The resulting type after applying the * operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Mul<PInt<Ur>> for NInt<Ul> where
    Ul: Mul<Ur>,
    <Ul as Mul<Ur>>::Output: Unsigned + NonZero
[src]

N(Ul) * P(Ur) = N(Ul * Ur)

type Output = NInt<<Ul as Mul<Ur>>::Output>

The resulting type after applying the * operator.

impl<V, A, U> Mul<TArr<V, A>> for NInt<U> where
    U: Unsigned + NonZero,
    NInt<U>: Mul<A> + Mul<V>, 
[src]

type Output = TArr<Prod<NInt<U>, V>, Prod<NInt<U>, A>>

The resulting type after applying the * operator.

impl<U: Unsigned + NonZero> Mul<Z0> for NInt<U>[src]

N * Z0 = Z0

type Output = Z0

The resulting type after applying the * operator.

impl<U: Unsigned + NonZero> Neg for NInt<U>[src]

-NInt = PInt

type Output = PInt<U>

The resulting type after applying the - operator.

impl<U: Unsigned + NonZero> NonZero for NInt<U>[src]

impl<U: Ord + Unsigned + NonZero> Ord for NInt<U>[src]

impl<U: PartialEq + Unsigned + NonZero> PartialEq<NInt<U>> for NInt<U>[src]

impl<U: PartialOrd + Unsigned + NonZero> PartialOrd<NInt<U>> for NInt<U>[src]

impl<U: Unsigned + NonZero> Pow<NInt<U>> for Z0[src]

0^N = 0

type Output = Z0

The result of the exponentiation.

impl<U: Unsigned + NonZero> Pow<NInt<U>> for P1[src]

1^N = 1

type Output = P1

The result of the exponentiation.

impl<U: Unsigned> Pow<NInt<UInt<U, B0>>> for N1[src]

(-1)^N = 1 if N is even

type Output = P1

The result of the exponentiation.

impl<U: Unsigned> Pow<NInt<UInt<U, B1>>> for N1[src]

(-1)^N = -1 if N is odd

type Output = N1

The result of the exponentiation.

impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B0>>> for NInt<Ul> where
    Ul: Pow<UInt<Ur, B0>>,
    <Ul as Pow<UInt<Ur, B0>>>::Output: Unsigned + NonZero
[src]

N(Ul)^P(Ur) = P(Ul^Ur) if Ur is even

type Output = PInt<<Ul as Pow<UInt<Ur, B0>>>::Output>

The result of the exponentiation.

impl<Ul: Unsigned + NonZero, Ur: Unsigned> Pow<PInt<UInt<Ur, B1>>> for NInt<Ul> where
    Ul: Pow<UInt<Ur, B1>>,
    <Ul as Pow<UInt<Ur, B1>>>::Output: Unsigned + NonZero
[src]

N(Ul)^P(Ur) = N(Ul^Ur) if Ur is odd

type Output = NInt<<Ul as Pow<UInt<Ur, B1>>>::Output>

The result of the exponentiation.

impl<U: Unsigned + NonZero> Pow<Z0> for NInt<U>[src]

N^0 = 1

type Output = P1

The result of the exponentiation.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for PInt<Ul> where
    Ul: Rem<Ur>,
    PInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>, 
[src]

$A<Ul> % $B<Ur> = $R<Ul % Ur>

type Output = <PInt<Ul> as PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>>::Output

The resulting type after applying the % operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<NInt<Ur>> for NInt<Ul> where
    Ul: Rem<Ur>,
    NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>, 
[src]

$A<Ul> % $B<Ur> = $R<Ul % Ur>

type Output = <NInt<Ul> as PrivateRem<<Ul as Rem<Ur>>::Output, NInt<Ur>>>::Output

The resulting type after applying the % operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Rem<PInt<Ur>> for NInt<Ul> where
    Ul: Rem<Ur>,
    NInt<Ul>: PrivateRem<<Ul as Rem<Ur>>::Output, PInt<Ur>>, 
[src]

$A<Ul> % $B<Ur> = $R<Ul % Ur>

type Output = <NInt<Ul> as PrivateRem<<Ul as Rem<Ur>>::Output, PInt<Ur>>>::Output

The resulting type after applying the % operator.

impl<U: Unsigned + NonZero> StructuralEq for NInt<U>[src]

impl<U: Unsigned + NonZero> StructuralPartialEq for NInt<U>[src]

impl<U: Unsigned + NonZero> Sub<NInt<U>> for Z0[src]

Z0 - N = P

type Output = PInt<U>

The resulting type after applying the - operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for PInt<Ul> where
    Ul: Add<Ur>,
    <Ul as Add<Ur>>::Output: Unsigned + NonZero
[src]

P(Ul) - N(Ur) = P(Ul + Ur)

type Output = PInt<<Ul as Add<Ur>>::Output>

The resulting type after applying the - operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<NInt<Ur>> for NInt<Ul> where
    Ur: Cmp<Ul> + PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>, 
[src]

N(Ul) - N(Ur): We resolve this with our PrivateAdd

type Output = <Ur as PrivateIntegerAdd<<Ur as Cmp<Ul>>::Output, Ul>>::Output

The resulting type after applying the - operator.

impl<Ul: Unsigned + NonZero, Ur: Unsigned + NonZero> Sub<PInt<Ur>> for NInt<Ul> where
    Ul: Add<Ur>,
    <Ul as Add<Ur>>::Output: Unsigned + NonZero
[src]

N(Ul) - P(Ur) = N(Ul + Ur)

type Output = NInt<<Ul as Add<Ur>>::Output>

The resulting type after applying the - operator.

impl<U: Unsigned + NonZero> Sub<Z0> for NInt<U>[src]

NInt - Z0 = NInt

type Output = NInt<U>

The resulting type after applying the - operator.

Auto Trait Implementations

impl<U> Send for NInt<U> where
    U: Send

impl<U> Sync for NInt<U> where
    U: Sync

impl<U> Unpin for NInt<U> where
    U: Unpin

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<M, N> PartialDiv<N> for M where
    M: Integer + Div<N> + Rem<N, Output = Z0>, 
[src]

type Output = <M as Div<N>>::Output

The type of the result of the division

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.