Struct typenum::uint::UInt[][src]

pub struct UInt<U, B> { /* fields omitted */ }

UInt is defined recursively, where B is the least significant bit and U is the rest of the number. Conceptually, U should be bound by the trait Unsigned and B should be bound by the trait Bit, but enforcing these bounds causes linear instead of logrithmic scaling in some places, so they are left off for now. They may be enforced in future.

In order to keep numbers unique, leading zeros are not allowed, so UInt<UTerm, B0> is forbidden.

Example

use typenum::{B0, B1, UInt, UTerm};

type U6 = UInt<UInt<UInt<UTerm, B1>, B1>, B0>;

Implementations

impl<U: Unsigned, B: Bit> UInt<U, B>[src]

pub fn new() -> UInt<U, B>[src]

Instantiates a singleton representing this unsigned integer.

Trait Implementations

impl<U: Unsigned, B: Bit> Add<B0> for UInt<U, B>[src]

U + B0 = U

type Output = UInt<U, B>

The resulting type after applying the + operator.

impl<U: Unsigned> Add<B1> for UInt<U, B0>[src]

UInt<U, B0> + B1 = UInt<U + B1>

type Output = UInt<U, B1>

The resulting type after applying the + operator.

impl<U: Unsigned> Add<B1> for UInt<U, B1> where
    U: Add<B1>,
    Add1<U>: Unsigned
[src]

UInt<U, B1> + B1 = UInt<U + B1, B0>

type Output = UInt<Add1<U>, B0>

The resulting type after applying the + operator.

impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B0> where
    Ul: Add<Ur>, 
[src]

UInt<Ul, B0> + UInt<Ur, B0> = UInt<Ul + Ur, B0>

type Output = UInt<Sum<Ul, Ur>, B0>

The resulting type after applying the + operator.

impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B0>> for UInt<Ul, B1> where
    Ul: Add<Ur>, 
[src]

UInt<Ul, B1> + UInt<Ur, B0> = UInt<Ul + Ur, B1>

type Output = UInt<Sum<Ul, Ur>, B1>

The resulting type after applying the + operator.

impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B0> where
    Ul: Add<Ur>, 
[src]

UInt<Ul, B0> + UInt<Ur, B1> = UInt<Ul + Ur, B1>

type Output = UInt<Sum<Ul, Ur>, B1>

The resulting type after applying the + operator.

impl<Ul: Unsigned, Ur: Unsigned> Add<UInt<Ur, B1>> for UInt<Ul, B1> where
    Ul: Add<Ur>,
    Sum<Ul, Ur>: Add<B1>, 
[src]

UInt<Ul, B1> + UInt<Ur, B1> = UInt<(Ul + Ur) + B1, B0>

type Output = UInt<Add1<Sum<Ul, Ur>>, B0>

The resulting type after applying the + operator.

impl<U: Unsigned, B: Bit> Add<UTerm> for UInt<U, B>[src]

UInt<U, B> + UTerm = UInt<U, B>

type Output = UInt<U, B>

The resulting type after applying the + operator.

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitAnd<Ur> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: PrivateAnd<Ur>,
    PrivateAndOut<UInt<Ul, Bl>, Ur>: Trim, 
[src]

Anding unsigned integers. We use our PrivateAnd operator and then Trim the output.

type Output = TrimOut<PrivateAndOut<UInt<Ul, Bl>, Ur>>

The resulting type after applying the & operator.

impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B0> where
    Ul: BitOr<Ur>, 
[src]

UInt<Ul, B0> | UInt<Ur, B0> = UInt<Ul | Ur, B0>

type Output = UInt<<Ul as BitOr<Ur>>::Output, B0>

The resulting type after applying the | operator.

impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B0>> for UInt<Ul, B1> where
    Ul: BitOr<Ur>, 
[src]

UInt<Ul, B1> | UInt<Ur, B0> = UInt<Ul | Ur, B1>

type Output = UInt<Or<Ul, Ur>, B1>

The resulting type after applying the | operator.

impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B0> where
    Ul: BitOr<Ur>, 
[src]

UInt<Ul, B0> | UInt<Ur, B1> = UInt<Ul | Ur, B1>

type Output = UInt<Or<Ul, Ur>, B1>

The resulting type after applying the | operator.

impl<Ul: Unsigned, Ur: Unsigned> BitOr<UInt<Ur, B1>> for UInt<Ul, B1> where
    Ul: BitOr<Ur>, 
[src]

UInt<Ul, B1> | UInt<Ur, B1> = UInt<Ul | Ur, B1>

type Output = UInt<Or<Ul, Ur>, B1>

The resulting type after applying the | operator.

impl<B: Bit, U: Unsigned> BitOr<UTerm> for UInt<U, B>[src]

X | UTerm = X

type Output = Self

The resulting type after applying the | operator.

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> BitXor<Ur> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: PrivateXor<Ur>,
    PrivateXorOut<UInt<Ul, Bl>, Ur>: Trim, 
[src]

Xoring unsigned integers. We use our PrivateXor operator and then Trim the output.

type Output = TrimOut<PrivateXorOut<UInt<Ul, Bl>, Ur>>

The resulting type after applying the ^ operator.

impl<U: Clone, B: Clone> Clone for UInt<U, B>[src]

impl<U: Unsigned, B: Bit> Cmp<UInt<U, B>> for UTerm[src]

Zero < Nonzero

type Output = Less

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B0> where
    Ul: PrivateCmp<Ur, Equal>, 
[src]

UInt<Ul, B0> cmp with UInt<Ur, B0>: SoFar is Equal

type Output = PrivateCmpOut<Ul, Ur, Equal>

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B0>> for UInt<Ul, B1> where
    Ul: PrivateCmp<Ur, Greater>, 
[src]

UInt<Ul, B1> cmp with UInt<Ur, B0>: SoFar is Greater

type Output = PrivateCmpOut<Ul, Ur, Greater>

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B1> where
    Ul: PrivateCmp<Ur, Equal>, 
[src]

UInt<Ul, B1> cmp with UInt<Ur, B1>: SoFar is Equal

type Output = PrivateCmpOut<Ul, Ur, Equal>

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<Ul: Unsigned, Ur: Unsigned> Cmp<UInt<Ur, B1>> for UInt<Ul, B0> where
    Ul: PrivateCmp<Ur, Less>, 
[src]

UInt<Ul, B0> cmp with UInt<Ur, B1>: SoFar is Less

type Output = PrivateCmpOut<Ul, Ur, Less>

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<U: Unsigned, B: Bit> Cmp<UTerm> for UInt<U, B>[src]

Nonzero > Zero

type Output = Greater

The result of the comparison. It should only ever be one of Greater, Less, or Equal.

impl<U: Copy, B: Copy> Copy for UInt<U, B>[src]

impl<U: Debug, B: Debug> Debug for UInt<U, B>[src]

impl<U: Default, B: Default> Default for UInt<U, B>[src]

impl<Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UTerm[src]

type Output = UTerm

The resulting type after applying the / operator.

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Div<UInt<Ur, Br>> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: Len,
    Length<UInt<Ul, Bl>>: Sub<B1>,
    (): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>, 
[src]

type Output = PrivateDivQuot<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>

The resulting type after applying the / operator.

impl<U: Eq, B: Eq> Eq for UInt<U, B>[src]

impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B0> where
    Xp: Gcd<Yp>,
    UInt<Xp, B0>: NonZero,
    UInt<Yp, B0>: NonZero
[src]

gcd(x, y) = 2*gcd(x/2, y/2) if both x and y even

type Output = UInt<Gcf<Xp, Yp>, B0>

The greatest common divisor.

impl<Xp, Yp> Gcd<UInt<Yp, B0>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Gcd<Yp>,
    UInt<Yp, B0>: NonZero
[src]

gcd(x, y) = gcd(x, y/2) if x odd and y even

type Output = Gcf<UInt<Xp, B1>, Yp>

The greatest common divisor.

impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B0> where
    Xp: Gcd<UInt<Yp, B1>>,
    UInt<Xp, B0>: NonZero
[src]

gcd(x, y) = gcd(x/2, y) if x even and y odd

type Output = Gcf<Xp, UInt<Yp, B1>>

The greatest common divisor.

impl<Xp, Yp> Gcd<UInt<Yp, B1>> for UInt<Xp, B1> where
    UInt<Xp, B1>: Max<UInt<Yp, B1>> + Min<UInt<Yp, B1>>,
    UInt<Yp, B1>: Max<UInt<Xp, B1>> + Min<UInt<Xp, B1>>,
    Maximum<UInt<Xp, B1>, UInt<Yp, B1>>: Sub<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>,
    Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>: Gcd<Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, 
[src]

gcd(x, y) = gcd([max(x, y) - min(x, y)], min(x, y)) if both x and y odd

This will immediately invoke the case for x even and y odd because the difference of two odd numbers is an even number.

type Output = Gcf<Diff<Maximum<UInt<Xp, B1>, UInt<Yp, B1>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>, Minimum<UInt<Xp, B1>, UInt<Yp, B1>>>

The greatest common divisor.

impl<Un, Bn, Ui, Bi> GetBit<UInt<Ui, Bi>> for UInt<Un, Bn> where
    UInt<Ui, Bi>: Copy + Sub<B1>,
    Un: GetBit<Sub1<UInt<Ui, Bi>>>, 
[src]

type Output = GetBitOut<Un, Sub1<UInt<Ui, Bi>>>

impl<Un, Bn> GetBit<UTerm> for UInt<Un, Bn> where
    Bn: Copy
[src]

type Output = Bn

impl<U: Hash, B: Hash> Hash for UInt<U, B>[src]

impl<U: Unsigned, B: Bit> Len for UInt<U, B> where
    U: Len,
    Length<U>: Add<B1>,
    Add1<Length<U>>: Unsigned
[src]

Length of a bit is 1

type Output = Add1<Length<U>>

The length as a type-level unsigned integer.

impl<U, B, Ur> Max<Ur> for UInt<U, B> where
    U: Unsigned,
    B: Bit,
    Ur: Unsigned,
    UInt<U, B>: Cmp<Ur> + PrivateMax<Ur, Compare<UInt<U, B>, Ur>>, 
[src]

type Output = PrivateMaxOut<UInt<U, B>, Ur, Compare<UInt<U, B>, Ur>>

The type of the maximum of Self and Rhs

impl<U, B, Ur> Min<Ur> for UInt<U, B> where
    U: Unsigned,
    B: Bit,
    Ur: Unsigned,
    UInt<U, B>: Cmp<Ur> + PrivateMin<Ur, Compare<UInt<U, B>, Ur>>, 
[src]

type Output = PrivateMinOut<UInt<U, B>, Ur, Compare<UInt<U, B>, Ur>>

The type of the minimum of Self and Rhs

impl<U: Unsigned, B: Bit> Mul<B0> for UInt<U, B>[src]

UInt * B0 = UTerm

type Output = UTerm

The resulting type after applying the * operator.

impl<U: Unsigned, B: Bit> Mul<B1> for UInt<U, B>[src]

UInt * B1 = UInt

type Output = UInt<U, B>

The resulting type after applying the * operator.

impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B0> where
    Ul: Mul<UInt<Ur, B>>, 
[src]

UInt<Ul, B0> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0>

type Output = UInt<Prod<Ul, UInt<Ur, B>>, B0>

The resulting type after applying the * operator.

impl<Ul: Unsigned, B: Bit, Ur: Unsigned> Mul<UInt<Ur, B>> for UInt<Ul, B1> where
    Ul: Mul<UInt<Ur, B>>,
    UInt<Prod<Ul, UInt<Ur, B>>, B0>: Add<UInt<Ur, B>>, 
[src]

UInt<Ul, B1> * UInt<Ur, B> = UInt<(Ul * UInt<Ur, B>), B0> + UInt<Ur, B>

type Output = Sum<UInt<Prod<Ul, UInt<Ur, B>>, B0>, UInt<Ur, B>>

The resulting type after applying the * operator.

impl<U: Unsigned, B: Bit> Mul<UTerm> for UInt<U, B>[src]

UInt<U, B> * UTerm = UTerm

type Output = UTerm

The resulting type after applying the * operator.

impl<U: Unsigned, B: Bit> NonZero for UInt<U, B>[src]

impl<U: Ord, B: Ord> Ord for UInt<U, B>[src]

impl<Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UTerm[src]

type Output = UTerm

The type of the result of the division

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> PartialDiv<UInt<Ur, Br>> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: Div<UInt<Ur, Br>> + Rem<UInt<Ur, Br>, Output = U0>, 
[src]

type Output = Quot<UInt<Ul, Bl>, UInt<Ur, Br>>

The type of the result of the division

impl<U: PartialEq, B: PartialEq> PartialEq<UInt<U, B>> for UInt<U, B>[src]

impl<U: PartialOrd, B: PartialOrd> PartialOrd<UInt<U, B>> for UInt<U, B>[src]

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for f32[src]

type Output = f32

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for f64[src]

type Output = f64

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for i64[src]

type Output = i64

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for isize[src]

type Output = isize

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for u8[src]

type Output = u8

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for u16[src]

type Output = u16

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for u32[src]

type Output = u32

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for u64[src]

type Output = u64

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for usize[src]

type Output = usize

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for i8[src]

type Output = i8

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for i16[src]

type Output = i16

The result of the exponentiation.

impl<U: Unsigned, B: Bit> Pow<UInt<U, B>> for i32[src]

type Output = i32

The result of the exponentiation.

impl PowerOfTwo for UInt<UTerm, B1>[src]

impl<U: Unsigned + PowerOfTwo> PowerOfTwo for UInt<U, B0>[src]

impl<Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UTerm[src]

type Output = UTerm

The resulting type after applying the % operator.

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned, Br: Bit> Rem<UInt<Ur, Br>> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: Len,
    Length<UInt<Ul, Bl>>: Sub<B1>,
    (): PrivateDiv<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>, 
[src]

type Output = PrivateDivRem<UInt<Ul, Bl>, UInt<Ur, Br>, U0, U0, Sub1<Length<UInt<Ul, Bl>>>>

The resulting type after applying the % operator.

impl<U: Unsigned, B: Bit> Shl<B0> for UInt<U, B>[src]

Shifting left any unsigned by a zero bit: U << B0 = U

type Output = UInt<U, B>

The resulting type after applying the << operator.

impl<U: Unsigned, B: Bit> Shl<B1> for UInt<U, B>[src]

Shifting left a UInt by a one bit: UInt<U, B> << B1 = UInt<UInt<U, B>, B0>

type Output = UInt<UInt<U, B>, B0>

The resulting type after applying the << operator.

impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shl<UInt<Ur, Br>> for UInt<U, B> where
    UInt<Ur, Br>: Sub<B1>,
    UInt<UInt<U, B>, B0>: Shl<Sub1<UInt<Ur, Br>>>, 
[src]

Shifting left UInt by UInt: X << Y = UInt(X, B0) << (Y - 1)

type Output = Shleft<UInt<UInt<U, B>, B0>, Sub1<UInt<Ur, Br>>>

The resulting type after applying the << operator.

impl<U: Unsigned, B: Bit> Shl<UTerm> for UInt<U, B>[src]

Shifting left UInt by UTerm: UInt<U, B> << UTerm = UInt<U, B>

type Output = UInt<U, B>

The resulting type after applying the << operator.

impl<U: Unsigned, B: Bit> Shr<B0> for UInt<U, B>[src]

Shifting right any unsigned by a zero bit: U >> B0 = U

type Output = UInt<U, B>

The resulting type after applying the >> operator.

impl<U: Unsigned, B: Bit> Shr<B1> for UInt<U, B>[src]

Shifting right a UInt by a 1 bit: UInt<U, B> >> B1 = U

type Output = U

The resulting type after applying the >> operator.

impl<U: Unsigned, B: Bit, Ur: Unsigned, Br: Bit> Shr<UInt<Ur, Br>> for UInt<U, B> where
    UInt<Ur, Br>: Sub<B1>,
    U: Shr<Sub1<UInt<Ur, Br>>>, 
[src]

Shifting right UInt by UInt: UInt(U, B) >> Y = U >> (Y - 1)

type Output = Shright<U, Sub1<UInt<Ur, Br>>>

The resulting type after applying the >> operator.

impl<U: Unsigned, B: Bit> Shr<UTerm> for UInt<U, B>[src]

Shifting right UInt by UTerm: UInt<U, B> >> UTerm = UInt<U, B>

type Output = UInt<U, B>

The resulting type after applying the >> operator.

impl<U, B> StructuralEq for UInt<U, B>[src]

impl<U, B> StructuralPartialEq for UInt<U, B>[src]

impl<U: Unsigned, B: Bit> Sub<B0> for UInt<U, B>[src]

UInt - B0 = UInt

type Output = UInt<U, B>

The resulting type after applying the - operator.

impl<U: Unsigned, B: Bit> Sub<B1> for UInt<UInt<U, B>, B1>[src]

UInt<U, B1> - B1 = UInt<U, B0>

type Output = UInt<UInt<U, B>, B0>

The resulting type after applying the - operator.

impl Sub<B1> for UInt<UTerm, B1>[src]

UInt<UTerm, B1> - B1 = UTerm

type Output = UTerm

The resulting type after applying the - operator.

impl<U: Unsigned> Sub<B1> for UInt<U, B0> where
    U: Sub<B1>,
    Sub1<U>: Unsigned
[src]

UInt<U, B0> - B1 = UInt<U - B1, B1>

type Output = UInt<Sub1<U>, B1>

The resulting type after applying the - operator.

impl<Ul: Unsigned, Bl: Bit, Ur: Unsigned> Sub<Ur> for UInt<Ul, Bl> where
    UInt<Ul, Bl>: PrivateSub<Ur>,
    PrivateSubOut<UInt<Ul, Bl>, Ur>: Trim, 
[src]

Subtracting unsigned integers. We just do our PrivateSub and then Trim the output.

type Output = TrimOut<PrivateSubOut<UInt<Ul, Bl>, Ur>>

The resulting type after applying the - operator.

impl<U: Unsigned, B: Bit> Unsigned for UInt<U, B>[src]

Auto Trait Implementations

impl<U, B> Send for UInt<U, B> where
    B: Send,
    U: Send

impl<U, B> Sync for UInt<U, B> where
    B: Sync,
    U: Sync

impl<U, B> Unpin for UInt<U, B> where
    B: Unpin,
    U: Unpin

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<X> Gcd<UTerm> for X where
    X: Unsigned + NonZero
[src]

type Output = X

The greatest common divisor.

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<N> Logarithm2 for N where
    N: PrivateLogarithm2, 
[src]

type Output = <N as PrivateLogarithm2>::Output

The result of the integer binary logarithm.

impl<X, N> Pow<N> for X where
    N: Unsigned,
    X: Unsigned + PrivatePow<UInt<UTerm, B1>, N>, 
[src]

type Output = <X as PrivatePow<UInt<UTerm, B1>, N>>::Output

The result of the exponentiation.

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<N, I, B> SetBit<I, B> for N where
    N: PrivateSetBit<I, B>,
    <N as PrivateSetBit<I, B>>::Output: Trim, 
[src]

type Output = <<N as PrivateSetBit<I, B>>::Output as Trim>::Output

impl<N> SquareRoot for N where
    N: PrivateSquareRoot, 
[src]

type Output = <N as PrivateSquareRoot>::Output

The result of the integer square root.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.