Struct heapless::binary_heap::BinaryHeap[][src]

pub struct BinaryHeap<T, N, KIND>(_)
where
    T: Ord,
    N: ArrayLength<T>,
    KIND: Kind
;

A priority queue implemented with a binary heap.

This can be either a min-heap or a max-heap.

It is a logic error for an item to be modified in such a way that the item’s ordering relative to any other item, as determined by the Ord trait, changes while it is in the heap. This is normally only possible through Cell, RefCell, global state, I/O, or unsafe code.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();

// We can use peek to look at the next item in the heap. In this case,
// there's no items in there yet so we get None.
assert_eq!(heap.peek(), None);

// Let's add some scores...
heap.push(1).unwrap();
heap.push(5).unwrap();
heap.push(2).unwrap();

// Now peek shows the most important item in the heap.
assert_eq!(heap.peek(), Some(&5));

// We can check the length of a heap.
assert_eq!(heap.len(), 3);

// We can iterate over the items in the heap, although they are returned in
// a random order.
for x in &heap {
    println!("{}", x);
}

// If we instead pop these scores, they should come back in order.
assert_eq!(heap.pop(), Some(5));
assert_eq!(heap.pop(), Some(2));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);

// We can clear the heap of any remaining items.
heap.clear();

// The heap should now be empty.
assert!(heap.is_empty())

Implementations

impl<T, N, K> BinaryHeap<T, N, K> where
    T: Ord,
    N: ArrayLength<T>,
    K: Kind, 
[src]

pub fn new() -> Self[src]

Creates an empty BinaryHeap as a $K-heap.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

// allocate the binary heap on the stack
let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(4).unwrap();

// allocate the binary heap in a static variable
static mut HEAP: BinaryHeap<i32, U8, Max> = BinaryHeap(heapless::i::BinaryHeap::new());

pub fn capacity(&self) -> usize[src]

Returns the capacity of the binary heap.

pub fn clear(&mut self)[src]

Drops all items from the binary heap.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(1).unwrap();
heap.push(3).unwrap();

assert!(!heap.is_empty());

heap.clear();

assert!(heap.is_empty());

pub fn len(&self) -> usize[src]

Returns the length of the binary heap.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(1).unwrap();
heap.push(3).unwrap();

assert_eq!(heap.len(), 2);

pub fn is_empty(&self) -> bool[src]

Checks if the binary heap is empty.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();

assert!(heap.is_empty());

heap.push(3).unwrap();
heap.push(5).unwrap();
heap.push(1).unwrap();

assert!(!heap.is_empty());

pub fn iter(&self) -> Iter<'_, T>[src]

Returns an iterator visiting all values in the underlying vector, in arbitrary order.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(1).unwrap();
heap.push(2).unwrap();
heap.push(3).unwrap();
heap.push(4).unwrap();

// Print 1, 2, 3, 4 in arbitrary order
for x in heap.iter() {
    println!("{}", x);

}

pub fn iter_mut(&mut self) -> IterMut<'_, T>[src]

Returns a mutable iterator visiting all values in the underlying vector, in arbitrary order.

WARNING Mutating the items in the binary heap can leave the heap in an inconsistent state.

pub fn peek(&self) -> Option<&T>[src]

Returns the top (greatest if max-heap, smallest if min-heap) item in the binary heap, or None if it is empty.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
assert_eq!(heap.peek(), None);

heap.push(1).unwrap();
heap.push(5).unwrap();
heap.push(2).unwrap();
assert_eq!(heap.peek(), Some(&5));

pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, N, K>>[src]

Returns a mutable reference to the greatest item in the binary heap, or None if it is empty.

Note: If the PeekMut value is leaked, the heap may be in an inconsistent state.

Examples

Basic usage:

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
assert!(heap.peek_mut().is_none());

heap.push(1);
heap.push(5);
heap.push(2);
{
    let mut val = heap.peek_mut().unwrap();
    *val = 0;
}

assert_eq!(heap.peek(), Some(&2));

pub fn pop(&mut self) -> Option<T>[src]

Removes the top (greatest if max-heap, smallest if min-heap) item from the binary heap and returns it, or None if it is empty.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(1).unwrap();
heap.push(3).unwrap();

assert_eq!(heap.pop(), Some(3));
assert_eq!(heap.pop(), Some(1));
assert_eq!(heap.pop(), None);

pub unsafe fn pop_unchecked(&mut self) -> T[src]

Removes the top (greatest if max-heap, smallest if min-heap) item from the binary heap and returns it, without checking if the binary heap is empty.

pub fn push(&mut self, item: T) -> Result<(), T>[src]

Pushes an item onto the binary heap.

use heapless::binary_heap::{BinaryHeap, Max};
use heapless::consts::*;

let mut heap: BinaryHeap<_, U8, Max> = BinaryHeap::new();
heap.push(3).unwrap();
heap.push(5).unwrap();
heap.push(1).unwrap();

assert_eq!(heap.len(), 3);
assert_eq!(heap.peek(), Some(&5));

pub unsafe fn push_unchecked(&mut self, item: T)[src]

Pushes an item onto the binary heap without first checking if it’s full.

Trait Implementations

impl<T, N, K> Clone for BinaryHeap<T, N, K> where
    N: ArrayLength<T>,
    K: Kind,
    T: Ord + Clone
[src]

impl<T, N, K> Debug for BinaryHeap<T, N, K> where
    N: ArrayLength<T>,
    K: Kind,
    T: Ord + Debug
[src]

impl<T, N, K> Default for BinaryHeap<T, N, K> where
    T: Ord,
    N: ArrayLength<T>,
    K: Kind, 
[src]

impl<T, N, K> Drop for BinaryHeap<T, N, K> where
    N: ArrayLength<T>,
    K: Kind,
    T: Ord
[src]

impl<'a, T, N, K> IntoIterator for &'a BinaryHeap<T, N, K> where
    N: ArrayLength<T>,
    K: Kind,
    T: Ord
[src]

type Item = &'a T

The type of the elements being iterated over.

type IntoIter = Iter<'a, T>

Which kind of iterator are we turning this into?

Auto Trait Implementations

impl<T, N, KIND> RefUnwindSafe for BinaryHeap<T, N, KIND> where
    KIND: RefUnwindSafe,
    <N as ArrayLength<T>>::ArrayType: RefUnwindSafe

impl<T, N, KIND> Send for BinaryHeap<T, N, KIND> where
    KIND: Send,
    T: Send

impl<T, N, KIND> Sync for BinaryHeap<T, N, KIND> where
    KIND: Sync,
    T: Sync

impl<T, N, KIND> Unpin for BinaryHeap<T, N, KIND> where
    KIND: Unpin,
    <N as ArrayLength<T>>::ArrayType: Unpin

impl<T, N, KIND> UnwindSafe for BinaryHeap<T, N, KIND> where
    KIND: UnwindSafe,
    <N as ArrayLength<T>>::ArrayType: UnwindSafe

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T> Same<T> for T[src]

type Output = T

Should always be Self

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

The resulting type after obtaining ownership.

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.