Struct chrono::naive::NaiveDate [−][src]
ISO 8601 calendar date without timezone. Allows for every proleptic Gregorian date from Jan 1, 262145 BCE to Dec 31, 262143 CE. Also supports the conversion from ISO 8601 ordinal and week date.
Calendar Date
The ISO 8601 calendar date follows the proleptic Gregorian calendar. It is like a normal civil calendar but note some slight differences:
-
Dates before the Gregorian calendar’s inception in 1582 are defined via the extrapolation. Be careful, as historical dates are often noted in the Julian calendar and others and the transition to Gregorian may differ across countries (as late as early 20C).
(Some example: Both Shakespeare from Britain and Cervantes from Spain seemingly died on the same calendar date—April 23, 1616—but in the different calendar. Britain used the Julian calendar at that time, so Shakespeare’s death is later.)
-
ISO 8601 calendars has the year 0, which is 1 BCE (a year before 1 CE). If you need a typical BCE/BC and CE/AD notation for year numbers, use the
Datelike::year_ce
method.
Week Date
The ISO 8601 week date is a triple of year number, week number and day of the week with the following rules:
-
A week consists of Monday through Sunday, and is always numbered within some year. The week number ranges from 1 to 52 or 53 depending on the year.
-
The week 1 of given year is defined as the first week containing January 4 of that year, or equivalently, the first week containing four or more days in that year.
-
The year number in the week date may not correspond to the actual Gregorian year. For example, January 3, 2016 (Sunday) was on the last (53rd) week of 2015.
Chrono’s date types default to the ISO 8601 calendar date,
but Datelike::iso_week
and
Datelike::weekday
methods
can be used to get the corresponding week date.
Ordinal Date
The ISO 8601 ordinal date is a pair of year number and day of the year (“ordinal”). The ordinal number ranges from 1 to 365 or 366 depending on the year. The year number is the same as that of the calendar date.
This is currently the internal format of Chrono’s date types.
Implementations
impl NaiveDate
[src][−]
pub fn from_ymd(year: i32, month: u32, day: u32) -> NaiveDate
[src][−]
Makes a new NaiveDate
from the calendar date
(year, month and day).
Panics on the out-of-range date, invalid month and/or day.
Example
use chrono::{NaiveDate, Datelike, Weekday}; let d = NaiveDate::from_ymd(2015, 3, 14); assert_eq!(d.year(), 2015); assert_eq!(d.month(), 3); assert_eq!(d.day(), 14); assert_eq!(d.ordinal(), 73); // day of year assert_eq!(d.iso_week().year(), 2015); assert_eq!(d.iso_week().week(), 11); assert_eq!(d.weekday(), Weekday::Sat); assert_eq!(d.num_days_from_ce(), 735671); // days since January 1, 1 CE
pub fn from_ymd_opt(year: i32, month: u32, day: u32) -> Option<NaiveDate>
[src][−]
Makes a new NaiveDate
from the calendar date
(year, month and day).
Returns None
on the out-of-range date, invalid month and/or day.
Example
use chrono::NaiveDate; let from_ymd_opt = NaiveDate::from_ymd_opt; assert!(from_ymd_opt(2015, 3, 14).is_some()); assert!(from_ymd_opt(2015, 0, 14).is_none()); assert!(from_ymd_opt(2015, 2, 29).is_none()); assert!(from_ymd_opt(-4, 2, 29).is_some()); // 5 BCE is a leap year assert!(from_ymd_opt(400000, 1, 1).is_none()); assert!(from_ymd_opt(-400000, 1, 1).is_none());
pub fn from_yo(year: i32, ordinal: u32) -> NaiveDate
[src][−]
Makes a new NaiveDate
from the ordinal date
(year and day of the year).
Panics on the out-of-range date and/or invalid day of year.
Example
use chrono::{NaiveDate, Datelike, Weekday}; let d = NaiveDate::from_yo(2015, 73); assert_eq!(d.ordinal(), 73); assert_eq!(d.year(), 2015); assert_eq!(d.month(), 3); assert_eq!(d.day(), 14); assert_eq!(d.iso_week().year(), 2015); assert_eq!(d.iso_week().week(), 11); assert_eq!(d.weekday(), Weekday::Sat); assert_eq!(d.num_days_from_ce(), 735671); // days since January 1, 1 CE
pub fn from_yo_opt(year: i32, ordinal: u32) -> Option<NaiveDate>
[src][−]
Makes a new NaiveDate
from the ordinal date
(year and day of the year).
Returns None
on the out-of-range date and/or invalid day of year.
Example
use chrono::NaiveDate; let from_yo_opt = NaiveDate::from_yo_opt; assert!(from_yo_opt(2015, 100).is_some()); assert!(from_yo_opt(2015, 0).is_none()); assert!(from_yo_opt(2015, 365).is_some()); assert!(from_yo_opt(2015, 366).is_none()); assert!(from_yo_opt(-4, 366).is_some()); // 5 BCE is a leap year assert!(from_yo_opt(400000, 1).is_none()); assert!(from_yo_opt(-400000, 1).is_none());
pub fn from_isoywd(year: i32, week: u32, weekday: Weekday) -> NaiveDate
[src][−]
Makes a new NaiveDate
from the ISO week date
(year, week number and day of the week).
The resulting NaiveDate
may have a different year from the input year.
Panics on the out-of-range date and/or invalid week number.
Example
use chrono::{NaiveDate, Datelike, Weekday}; let d = NaiveDate::from_isoywd(2015, 11, Weekday::Sat); assert_eq!(d.iso_week().year(), 2015); assert_eq!(d.iso_week().week(), 11); assert_eq!(d.weekday(), Weekday::Sat); assert_eq!(d.year(), 2015); assert_eq!(d.month(), 3); assert_eq!(d.day(), 14); assert_eq!(d.ordinal(), 73); // day of year assert_eq!(d.num_days_from_ce(), 735671); // days since January 1, 1 CE
pub fn from_isoywd_opt(
year: i32,
week: u32,
weekday: Weekday
) -> Option<NaiveDate>
[src][−]
year: i32,
week: u32,
weekday: Weekday
) -> Option<NaiveDate>
Makes a new NaiveDate
from the ISO week date
(year, week number and day of the week).
The resulting NaiveDate
may have a different year from the input year.
Returns None
on the out-of-range date and/or invalid week number.
Example
use chrono::{NaiveDate, Weekday}; let from_ymd = NaiveDate::from_ymd; let from_isoywd_opt = NaiveDate::from_isoywd_opt; assert_eq!(from_isoywd_opt(2015, 0, Weekday::Sun), None); assert_eq!(from_isoywd_opt(2015, 10, Weekday::Sun), Some(from_ymd(2015, 3, 8))); assert_eq!(from_isoywd_opt(2015, 30, Weekday::Mon), Some(from_ymd(2015, 7, 20))); assert_eq!(from_isoywd_opt(2015, 60, Weekday::Mon), None); assert_eq!(from_isoywd_opt(400000, 10, Weekday::Fri), None); assert_eq!(from_isoywd_opt(-400000, 10, Weekday::Sat), None);
The year number of ISO week date may differ from that of the calendar date.
// Mo Tu We Th Fr Sa Su // 2014-W52 22 23 24 25 26 27 28 has 4+ days of new year, // 2015-W01 29 30 31 1 2 3 4 <- so this is the first week assert_eq!(from_isoywd_opt(2014, 52, Weekday::Sun), Some(from_ymd(2014, 12, 28))); assert_eq!(from_isoywd_opt(2014, 53, Weekday::Mon), None); assert_eq!(from_isoywd_opt(2015, 1, Weekday::Mon), Some(from_ymd(2014, 12, 29))); // 2015-W52 21 22 23 24 25 26 27 has 4+ days of old year, // 2015-W53 28 29 30 31 1 2 3 <- so this is the last week // 2016-W01 4 5 6 7 8 9 10 assert_eq!(from_isoywd_opt(2015, 52, Weekday::Sun), Some(from_ymd(2015, 12, 27))); assert_eq!(from_isoywd_opt(2015, 53, Weekday::Sun), Some(from_ymd(2016, 1, 3))); assert_eq!(from_isoywd_opt(2015, 54, Weekday::Mon), None); assert_eq!(from_isoywd_opt(2016, 1, Weekday::Mon), Some(from_ymd(2016, 1, 4)));
pub fn from_num_days_from_ce(days: i32) -> NaiveDate
[src][−]
Makes a new NaiveDate
from a day’s number in the proleptic Gregorian calendar, with
January 1, 1 being day 1.
Panics if the date is out of range.
Example
use chrono::{NaiveDate, Datelike, Weekday}; let d = NaiveDate::from_num_days_from_ce(735671); assert_eq!(d.num_days_from_ce(), 735671); // days since January 1, 1 CE assert_eq!(d.year(), 2015); assert_eq!(d.month(), 3); assert_eq!(d.day(), 14); assert_eq!(d.ordinal(), 73); // day of year assert_eq!(d.iso_week().year(), 2015); assert_eq!(d.iso_week().week(), 11); assert_eq!(d.weekday(), Weekday::Sat);
While not directly supported by Chrono,
it is easy to convert from the Julian day number
(January 1, 4713 BCE in the Julian calendar being Day 0)
to Gregorian with this method.
(Note that this panics when jd
is out of range.)
use chrono::NaiveDate; fn jd_to_date(jd: i32) -> NaiveDate { // keep in mind that the Julian day number is 0-based // while this method requires an 1-based number. NaiveDate::from_num_days_from_ce(jd - 1721425) } // January 1, 4713 BCE in Julian = November 24, 4714 BCE in Gregorian assert_eq!(jd_to_date(0), NaiveDate::from_ymd(-4713, 11, 24)); assert_eq!(jd_to_date(1721426), NaiveDate::from_ymd(1, 1, 1)); assert_eq!(jd_to_date(2450000), NaiveDate::from_ymd(1995, 10, 9)); assert_eq!(jd_to_date(2451545), NaiveDate::from_ymd(2000, 1, 1));
pub fn from_num_days_from_ce_opt(days: i32) -> Option<NaiveDate>
[src][−]
Makes a new NaiveDate
from a day’s number in the proleptic Gregorian calendar, with
January 1, 1 being day 1.
Returns None
if the date is out of range.
Example
use chrono::NaiveDate; let from_ndays_opt = NaiveDate::from_num_days_from_ce_opt; let from_ymd = NaiveDate::from_ymd; assert_eq!(from_ndays_opt(730_000), Some(from_ymd(1999, 9, 3))); assert_eq!(from_ndays_opt(1), Some(from_ymd(1, 1, 1))); assert_eq!(from_ndays_opt(0), Some(from_ymd(0, 12, 31))); assert_eq!(from_ndays_opt(-1), Some(from_ymd(0, 12, 30))); assert_eq!(from_ndays_opt(100_000_000), None); assert_eq!(from_ndays_opt(-100_000_000), None);
pub fn from_weekday_of_month(
year: i32,
month: u32,
weekday: Weekday,
n: u8
) -> NaiveDate
[src][−]
year: i32,
month: u32,
weekday: Weekday,
n: u8
) -> NaiveDate
Makes a new NaiveDate
by counting the number of occurrences of a particular day-of-week
since the beginning of the given month. For instance, if you want the 2nd Friday of March
2017, you would use NaiveDate::from_weekday_of_month(2017, 3, Weekday::Fri, 2)
.
Panics
The resulting NaiveDate
is guaranteed to be in month
. If n
is larger than the number
of weekday
in month
(eg. the 6th Friday of March 2017) then this function will panic.
n
is 1-indexed. Passing n=0
will cause a panic.
Example
use chrono::{NaiveDate, Weekday}; let from_weekday_of_month = NaiveDate::from_weekday_of_month; let from_ymd = NaiveDate::from_ymd; assert_eq!(from_weekday_of_month(2018, 8, Weekday::Wed, 1), from_ymd(2018, 8, 1)); assert_eq!(from_weekday_of_month(2018, 8, Weekday::Fri, 1), from_ymd(2018, 8, 3)); assert_eq!(from_weekday_of_month(2018, 8, Weekday::Tue, 2), from_ymd(2018, 8, 14)); assert_eq!(from_weekday_of_month(2018, 8, Weekday::Fri, 4), from_ymd(2018, 8, 24)); assert_eq!(from_weekday_of_month(2018, 8, Weekday::Fri, 5), from_ymd(2018, 8, 31));
pub fn from_weekday_of_month_opt(
year: i32,
month: u32,
weekday: Weekday,
n: u8
) -> Option<NaiveDate>
[src][−]
year: i32,
month: u32,
weekday: Weekday,
n: u8
) -> Option<NaiveDate>
Makes a new NaiveDate
by counting the number of occurrences of a particular day-of-week
since the beginning of the given month. For instance, if you want the 2nd Friday of March
2017, you would use NaiveDate::from_weekday_of_month(2017, 3, Weekday::Fri, 2)
. n
is 1-indexed.
use chrono::{NaiveDate, Weekday}; assert_eq!(NaiveDate::from_weekday_of_month_opt(2017, 3, Weekday::Fri, 2), NaiveDate::from_ymd_opt(2017, 3, 10))
Returns None
if n
out-of-range; ie. if n
is larger than the number of weekday
in
month
(eg. the 6th Friday of March 2017), or if n == 0
.
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveDate>
[src][−]
Parses a string with the specified format string and returns a new NaiveDate
.
See the format::strftime
module
on the supported escape sequences.
Example
use chrono::NaiveDate; let parse_from_str = NaiveDate::parse_from_str; assert_eq!(parse_from_str("2015-09-05", "%Y-%m-%d"), Ok(NaiveDate::from_ymd(2015, 9, 5))); assert_eq!(parse_from_str("5sep2015", "%d%b%Y"), Ok(NaiveDate::from_ymd(2015, 9, 5)));
Time and offset is ignored for the purpose of parsing.
assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"), Ok(NaiveDate::from_ymd(2014, 5, 17)));
Out-of-bound dates or insufficient fields are errors.
assert!(parse_from_str("2015/9", "%Y/%m").is_err()); assert!(parse_from_str("2015/9/31", "%Y/%m/%d").is_err());
All parsed fields should be consistent to each other, otherwise it’s an error.
assert!(parse_from_str("Sat, 09 Aug 2013", "%a, %d %b %Y").is_err());
pub fn and_time(&self, time: NaiveTime) -> NaiveDateTime
[src][−]
Makes a new NaiveDateTime
from the current date and given NaiveTime
.
Example
use chrono::{NaiveDate, NaiveTime, NaiveDateTime}; let d = NaiveDate::from_ymd(2015, 6, 3); let t = NaiveTime::from_hms_milli(12, 34, 56, 789); let dt: NaiveDateTime = d.and_time(t); assert_eq!(dt.date(), d); assert_eq!(dt.time(), t);
pub fn and_hms(&self, hour: u32, min: u32, sec: u32) -> NaiveDateTime
[src][−]
Makes a new NaiveDateTime
from the current date, hour, minute and second.
No leap second is allowed here;
use NaiveDate::and_hms_*
methods with a subsecond parameter instead.
Panics on invalid hour, minute and/or second.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Timelike, Weekday}; let d = NaiveDate::from_ymd(2015, 6, 3); let dt: NaiveDateTime = d.and_hms(12, 34, 56); assert_eq!(dt.year(), 2015); assert_eq!(dt.weekday(), Weekday::Wed); assert_eq!(dt.second(), 56);
pub fn and_hms_opt(
&self,
hour: u32,
min: u32,
sec: u32
) -> Option<NaiveDateTime>
[src][−]
&self,
hour: u32,
min: u32,
sec: u32
) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
from the current date, hour, minute and second.
No leap second is allowed here;
use NaiveDate::and_hms_*_opt
methods with a subsecond parameter instead.
Returns None
on invalid hour, minute and/or second.
Example
use chrono::NaiveDate; let d = NaiveDate::from_ymd(2015, 6, 3); assert!(d.and_hms_opt(12, 34, 56).is_some()); assert!(d.and_hms_opt(12, 34, 60).is_none()); // use `and_hms_milli_opt` instead assert!(d.and_hms_opt(12, 60, 56).is_none()); assert!(d.and_hms_opt(24, 34, 56).is_none());
pub fn and_hms_milli(
&self,
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> NaiveDateTime
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> NaiveDateTime
Makes a new NaiveDateTime
from the current date, hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or millisecond.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Timelike, Weekday}; let d = NaiveDate::from_ymd(2015, 6, 3); let dt: NaiveDateTime = d.and_hms_milli(12, 34, 56, 789); assert_eq!(dt.year(), 2015); assert_eq!(dt.weekday(), Weekday::Wed); assert_eq!(dt.second(), 56); assert_eq!(dt.nanosecond(), 789_000_000);
pub fn and_hms_milli_opt(
&self,
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveDateTime>
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
milli: u32
) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
from the current date, hour, minute, second and millisecond.
The millisecond part can exceed 1,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or millisecond.
Example
use chrono::NaiveDate; let d = NaiveDate::from_ymd(2015, 6, 3); assert!(d.and_hms_milli_opt(12, 34, 56, 789).is_some()); assert!(d.and_hms_milli_opt(12, 34, 59, 1_789).is_some()); // leap second assert!(d.and_hms_milli_opt(12, 34, 59, 2_789).is_none()); assert!(d.and_hms_milli_opt(12, 34, 60, 789).is_none()); assert!(d.and_hms_milli_opt(12, 60, 56, 789).is_none()); assert!(d.and_hms_milli_opt(24, 34, 56, 789).is_none());
pub fn and_hms_micro(
&self,
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> NaiveDateTime
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> NaiveDateTime
Makes a new NaiveDateTime
from the current date, hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or microsecond.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Timelike, Weekday}; let d = NaiveDate::from_ymd(2015, 6, 3); let dt: NaiveDateTime = d.and_hms_micro(12, 34, 56, 789_012); assert_eq!(dt.year(), 2015); assert_eq!(dt.weekday(), Weekday::Wed); assert_eq!(dt.second(), 56); assert_eq!(dt.nanosecond(), 789_012_000);
pub fn and_hms_micro_opt(
&self,
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveDateTime>
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
micro: u32
) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
from the current date, hour, minute, second and microsecond.
The microsecond part can exceed 1,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or microsecond.
Example
use chrono::NaiveDate; let d = NaiveDate::from_ymd(2015, 6, 3); assert!(d.and_hms_micro_opt(12, 34, 56, 789_012).is_some()); assert!(d.and_hms_micro_opt(12, 34, 59, 1_789_012).is_some()); // leap second assert!(d.and_hms_micro_opt(12, 34, 59, 2_789_012).is_none()); assert!(d.and_hms_micro_opt(12, 34, 60, 789_012).is_none()); assert!(d.and_hms_micro_opt(12, 60, 56, 789_012).is_none()); assert!(d.and_hms_micro_opt(24, 34, 56, 789_012).is_none());
pub fn and_hms_nano(
&self,
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> NaiveDateTime
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> NaiveDateTime
Makes a new NaiveDateTime
from the current date, hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Panics on invalid hour, minute, second and/or nanosecond.
Example
use chrono::{NaiveDate, NaiveDateTime, Datelike, Timelike, Weekday}; let d = NaiveDate::from_ymd(2015, 6, 3); let dt: NaiveDateTime = d.and_hms_nano(12, 34, 56, 789_012_345); assert_eq!(dt.year(), 2015); assert_eq!(dt.weekday(), Weekday::Wed); assert_eq!(dt.second(), 56); assert_eq!(dt.nanosecond(), 789_012_345);
pub fn and_hms_nano_opt(
&self,
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveDateTime>
[src][−]
&self,
hour: u32,
min: u32,
sec: u32,
nano: u32
) -> Option<NaiveDateTime>
Makes a new NaiveDateTime
from the current date, hour, minute, second and nanosecond.
The nanosecond part can exceed 1,000,000,000 in order to represent the leap second.
Returns None
on invalid hour, minute, second and/or nanosecond.
Example
use chrono::NaiveDate; let d = NaiveDate::from_ymd(2015, 6, 3); assert!(d.and_hms_nano_opt(12, 34, 56, 789_012_345).is_some()); assert!(d.and_hms_nano_opt(12, 34, 59, 1_789_012_345).is_some()); // leap second assert!(d.and_hms_nano_opt(12, 34, 59, 2_789_012_345).is_none()); assert!(d.and_hms_nano_opt(12, 34, 60, 789_012_345).is_none()); assert!(d.and_hms_nano_opt(12, 60, 56, 789_012_345).is_none()); assert!(d.and_hms_nano_opt(24, 34, 56, 789_012_345).is_none());
pub fn succ(&self) -> NaiveDate
[src][−]
Makes a new NaiveDate
for the next calendar date.
Panics when self
is the last representable date.
Example
use chrono::NaiveDate; assert_eq!(NaiveDate::from_ymd(2015, 6, 3).succ(), NaiveDate::from_ymd(2015, 6, 4)); assert_eq!(NaiveDate::from_ymd(2015, 6, 30).succ(), NaiveDate::from_ymd(2015, 7, 1)); assert_eq!(NaiveDate::from_ymd(2015, 12, 31).succ(), NaiveDate::from_ymd(2016, 1, 1));
pub fn succ_opt(&self) -> Option<NaiveDate>
[src][−]
Makes a new NaiveDate
for the next calendar date.
Returns None
when self
is the last representable date.
Example
use chrono::NaiveDate; use chrono::naive::MAX_DATE; assert_eq!(NaiveDate::from_ymd(2015, 6, 3).succ_opt(), Some(NaiveDate::from_ymd(2015, 6, 4))); assert_eq!(MAX_DATE.succ_opt(), None);
pub fn pred(&self) -> NaiveDate
[src][−]
Makes a new NaiveDate
for the previous calendar date.
Panics when self
is the first representable date.
Example
use chrono::NaiveDate; assert_eq!(NaiveDate::from_ymd(2015, 6, 3).pred(), NaiveDate::from_ymd(2015, 6, 2)); assert_eq!(NaiveDate::from_ymd(2015, 6, 1).pred(), NaiveDate::from_ymd(2015, 5, 31)); assert_eq!(NaiveDate::from_ymd(2015, 1, 1).pred(), NaiveDate::from_ymd(2014, 12, 31));
pub fn pred_opt(&self) -> Option<NaiveDate>
[src][−]
Makes a new NaiveDate
for the previous calendar date.
Returns None
when self
is the first representable date.
Example
use chrono::NaiveDate; use chrono::naive::MIN_DATE; assert_eq!(NaiveDate::from_ymd(2015, 6, 3).pred_opt(), Some(NaiveDate::from_ymd(2015, 6, 2))); assert_eq!(MIN_DATE.pred_opt(), None);
pub fn checked_add_signed(self, rhs: OldDuration) -> Option<NaiveDate>
[src][−]
Adds the days
part of given Duration
to the current date.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate}; use chrono::naive::MAX_DATE; let d = NaiveDate::from_ymd(2015, 9, 5); assert_eq!(d.checked_add_signed(Duration::days(40)), Some(NaiveDate::from_ymd(2015, 10, 15))); assert_eq!(d.checked_add_signed(Duration::days(-40)), Some(NaiveDate::from_ymd(2015, 7, 27))); assert_eq!(d.checked_add_signed(Duration::days(1_000_000_000)), None); assert_eq!(d.checked_add_signed(Duration::days(-1_000_000_000)), None); assert_eq!(MAX_DATE.checked_add_signed(Duration::days(1)), None);
pub fn checked_sub_signed(self, rhs: OldDuration) -> Option<NaiveDate>
[src][−]
Subtracts the days
part of given Duration
from the current date.
Returns None
when it will result in overflow.
Example
use chrono::{Duration, NaiveDate}; use chrono::naive::MIN_DATE; let d = NaiveDate::from_ymd(2015, 9, 5); assert_eq!(d.checked_sub_signed(Duration::days(40)), Some(NaiveDate::from_ymd(2015, 7, 27))); assert_eq!(d.checked_sub_signed(Duration::days(-40)), Some(NaiveDate::from_ymd(2015, 10, 15))); assert_eq!(d.checked_sub_signed(Duration::days(1_000_000_000)), None); assert_eq!(d.checked_sub_signed(Duration::days(-1_000_000_000)), None); assert_eq!(MIN_DATE.checked_sub_signed(Duration::days(1)), None);
pub fn signed_duration_since(self, rhs: NaiveDate) -> OldDuration
[src][−]
Subtracts another NaiveDate
from the current date.
Returns a Duration
of integral numbers.
This does not overflow or underflow at all,
as all possible output fits in the range of Duration
.
Example
use chrono::{Duration, NaiveDate}; let from_ymd = NaiveDate::from_ymd; let since = NaiveDate::signed_duration_since; assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2014, 1, 1)), Duration::zero()); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2013, 12, 31)), Duration::days(1)); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2014, 1, 2)), Duration::days(-1)); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2013, 9, 23)), Duration::days(100)); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2013, 1, 1)), Duration::days(365)); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(2010, 1, 1)), Duration::days(365*4 + 1)); assert_eq!(since(from_ymd(2014, 1, 1), from_ymd(1614, 1, 1)), Duration::days(365*400 + 97));
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I> where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
[src][−]
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
Formats the date with the specified formatting items.
Otherwise it is the same as the ordinary format
method.
The Iterator
of items should be Clone
able,
since the resulting DelayedFormat
value may be formatted multiple times.
Example
use chrono::NaiveDate; use chrono::format::strftime::StrftimeItems; let fmt = StrftimeItems::new("%Y-%m-%d"); let d = NaiveDate::from_ymd(2015, 9, 5); assert_eq!(d.format_with_items(fmt.clone()).to_string(), "2015-09-05"); assert_eq!(d.format("%Y-%m-%d").to_string(), "2015-09-05");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", d.format_with_items(fmt)), "2015-09-05");
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>>
[src][−]
Formats the date with the specified format string.
See the format::strftime
module
on the supported escape sequences.
This returns a DelayedFormat
,
which gets converted to a string only when actual formatting happens.
You may use the to_string
method to get a String
,
or just feed it into print!
and other formatting macros.
(In this way it avoids the redundant memory allocation.)
A wrong format string does not issue an error immediately.
Rather, converting or formatting the DelayedFormat
fails.
You are recommended to immediately use DelayedFormat
for this reason.
Example
use chrono::NaiveDate; let d = NaiveDate::from_ymd(2015, 9, 5); assert_eq!(d.format("%Y-%m-%d").to_string(), "2015-09-05"); assert_eq!(d.format("%A, %-d %B, %C%y").to_string(), "Saturday, 5 September, 2015");
The resulting DelayedFormat
can be formatted directly via the Display
trait.
assert_eq!(format!("{}", d.format("%Y-%m-%d")), "2015-09-05"); assert_eq!(format!("{}", d.format("%A, %-d %B, %C%y")), "Saturday, 5 September, 2015");
pub fn iter_days(&self) -> NaiveDateDaysIterator
[src][−]
Returns an iterator that steps by days until the last representable date.
Example
let expected = [ NaiveDate::from_ymd(2016, 2, 27), NaiveDate::from_ymd(2016, 2, 28), NaiveDate::from_ymd(2016, 2, 29), NaiveDate::from_ymd(2016, 3, 1), ]; let mut count = 0; for (idx, d) in NaiveDate::from_ymd(2016, 2, 27).iter_days().take(4).enumerate() { assert_eq!(d, expected[idx]); count += 1; } assert_eq!(count, 4);
pub fn iter_weeks(&self) -> NaiveDateWeeksIterator
[src][−]
Returns an iterator that steps by weeks until the last representable date.
Example
let expected = [ NaiveDate::from_ymd(2016, 2, 27), NaiveDate::from_ymd(2016, 3, 5), NaiveDate::from_ymd(2016, 3, 12), NaiveDate::from_ymd(2016, 3, 19), ]; let mut count = 0; for (idx, d) in NaiveDate::from_ymd(2016, 2, 27).iter_weeks().take(4).enumerate() { assert_eq!(d, expected[idx]); count += 1; } assert_eq!(count, 4);
Trait Implementations
impl Add<Duration> for NaiveDate
[src][+]
impl AddAssign<Duration> for NaiveDate
[src][+]
impl Clone for NaiveDate
[src][+]
impl Copy for NaiveDate
[src]
impl Datelike for NaiveDate
[src][+]
impl Debug for NaiveDate
[src][+]
impl Display for NaiveDate
[src][+]
impl Eq for NaiveDate
[src]
impl FromStr for NaiveDate
[src][+]
type Err = ParseError
fn from_str(s: &str) -> ParseResult<NaiveDate>
[src][−]
impl Hash for NaiveDate
[src][+]
impl Ord for NaiveDate
[src][+]
impl PartialEq<NaiveDate> for NaiveDate
[src][+]
impl PartialOrd<NaiveDate> for NaiveDate
[src][+]
impl StructuralEq for NaiveDate
[src]
impl StructuralPartialEq for NaiveDate
[src]
impl Sub<Duration> for NaiveDate
[src][+]
impl Sub<NaiveDate> for NaiveDate
[src][+]
type Output = OldDuration
fn sub(self, rhs: NaiveDate) -> OldDuration
[src][−]
impl SubAssign<Duration> for NaiveDate
[src][+]
Auto Trait Implementations
impl RefUnwindSafe for NaiveDate
impl Send for NaiveDate
impl Sync for NaiveDate
impl Unpin for NaiveDate
impl UnwindSafe for NaiveDate
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src][+]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src][+]
T: ?Sized,
impl<T> From<T> for T
[src][+]
impl<T, U> Into<U> for T where
U: From<T>,
[src][+]
U: From<T>,
impl<T> ToOwned for T where
T: Clone,
[src][+]
T: Clone,
impl<T> ToString for T where
T: Display + ?Sized,
[src][+]
T: Display + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src][+]
U: Into<T>,
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src][+]
U: TryFrom<T>,